zbMATH — the first resource for mathematics

Some sporadic geometries related to PG(3,2). (English) Zbl 0509.05026

05B25 Combinatorial aspects of finite geometries
05C25 Graphs and abstract algebra (groups, rings, fields, etc.)
51E25 Other finite nonlinear geometries
Full Text: DOI
[1] M.Aschbacher and S. D.Smith, Tits geometries over GF(2) defined by groups over GF(3) (to appear). · Zbl 0518.51007
[2] F. Buekenhout, The basic diagram of a geometry. In: Geometries and Groups. LNM893, 1-29 (1981). · Zbl 0491.51011
[3] F. C. Bussemaker andJ. J. Seidel, Symmetric Hadamard matrices of order 36. Ann. N.Y. Acad. Sci.175, 66-79 (1970). · Zbl 0239.05010
[4] A. R. Caldebbank andD. B. Wales, A global code invariant under the Higman-Sims group. J. Algebra75, 233-260 (1982). · Zbl 0492.20011
[5] P. J. Cameron andD. A. Drake, Partial ?-geometries of small nexus. Ann. Discr. Math.6, 19-29 (1980). · Zbl 0448.05015
[6] J. H.Conway, Three lectures on exceptional groups. In: Finite Simple Groups, 215-247, New York 1971.
[7] R. T. Curtis, The subgroups of. 0, Part I. Lattice stabilizers. J. Algebra27, 549-573 (1973). · Zbl 0297.20028
[8] D. A. Drake, Partial ?-geometries and generalized Hadamard matrices over groups. Canad. J. Math.31, 617-627 (1979). · Zbl 0406.05018
[9] W.Haemers, Eigenvalue Techniques in Design and Graph Theory. Math. Centre Tracts121, Math. Centrum Amsterdam 1980. · Zbl 0429.05013
[10] A. J. Hoffman andR. R. Singleton, On Moore graphs of diameter 2 and 3. IBM J. Res. Develop.4, 497-504 (1960). · Zbl 0096.38102
[11] W. M. Kantor, Some geometries that are almost buildings. Europ. J. Combinatorics2, 239-247 (1981). · Zbl 0514.51006
[12] W. M.Kantor, Some exceptional 2-adic buildings (to appear). · Zbl 0562.51006
[13] F. J.MacWilliams and N. J. A.Sloane, The Theory of Error-Correcting Codes. Amsterdam 1978. · Zbl 0369.94008
[14] A. Neumaier, Regular cliques in graphs and special 1 1/2-designs. In: Finite Geometries and Designs. London Math. Soc. Lecture Note Series49, 244-259 (1981).
[15] M. A. Ronan andS. D. Smith, 2-local geometries for some sporadic groups. AMS Proc. Symp. Pure Math.37, 283-289 (1980). · Zbl 0478.20015
[16] E. Shult andA. Yanushka, Nearn-gons and line systems. Geom. Dedicata9, 1-72 (1980). · Zbl 0433.51008
[17] D. E. Taylor, Regular 2-graphs. Proc. London Math. Soc. (3)35, 257-274 (1977). · Zbl 0362.05065
[18] J.Tits, A local approach to buildings. In: The Geometric Vein, 215-247, New York-Heidelberg-Berlin 1981.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.