×

zbMATH — the first resource for mathematics

Equilibrium time correlation functions in the low-density limit. (English) Zbl 0508.60089

MSC:
60K35 Interacting random processes; statistical mechanics type models; percolation theory
81P20 Stochastic mechanics (including stochastic electrodynamics)
82B05 Classical equilibrium statistical mechanics (general)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] H. Grad, Principles of the Kinetic Theory of Gases, inHandbuch der Physik, S. Flügge, ed. (Springer, Berlin, 1958), Vol. 12.
[2] O. E. Lanford, Time Evolution of Large Classical Systems, inDynamical Systems, Theory and Applications, J. Moser, ed. (Lecture Notes in Physics No. 38, Springer, Berlin, 1975), p. 1. · Zbl 0329.70011
[3] O. E. Lanford, On the Derivation of the Boltzmann Equation.Soc. Math. de France. Astérisque 40:117 (1976). · Zbl 0353.70020
[4] J. L. Lebowitz and J. Percus,Phys. Rev. 155:122 (1967).
[5] J. L. Lebowitz, J. Percus, and J. Sykes,Phys. Rev. 188:487 (1969).
[6] P. Resibois and J. L. Lebowitz,J. Stat. Phys. 12:483 (1975). · Zbl 1255.82058
[7] W. Braun and K. Hepp,Comm. Math. Phys. 56:101 (1977). · Zbl 1155.81383
[8] K. Hepp and E. H. Lieb,Helv. Phys. Acta 46, 573 (1973).
[9] F. King, Ph.D. Thesis, Department of Mathematics, University of California at Berkeley (1975).
[10] C. Cercignani,Transport Theory and Statistical Physics 2:211 (1972). · Zbl 0295.76048
[11] O. E. Lanford, Notes of the Lectures at the Troisième Cycle, Lausanne (1978), unpublished.
[12] R. K. Alexander, Ph.D. Thesis, Department of Mathematics, University of California at Berkeley (1975).
[13] C. Cercignani,The Boltzmann Equation (Elsevier, New York, 1976).
[14] M. Klaus,Helv. Phys. Acta 48:99 (1975).
[15] D. Ruelle,Statistical Mechanics: Rigorous Results (Benjamin, Reading, Mass., 1969). · Zbl 0177.57301
[16] R. L. Dobrushin and B. Tirozzi,Comm. Math. Phys. 54:173 (1977). · Zbl 0391.60095
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.