×

zbMATH — the first resource for mathematics

Interpolation in Logiken monotoner Systeme. (English) Zbl 0508.03015

MSC:
03C40 Interpolation, preservation, definability
03C52 Properties of classes of models
03C80 Logic with extra quantifiers and operators
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Ebbinghaus, H.-D.: Über für-fast-alle Quantoren. Arch. math. Logik12, 179–193 (1969). · Zbl 0259.02008
[2] Erdös, P.: Graph theory and probability. Canad. J. Math.11, 34–38 (1959). · Zbl 0084.39602
[3] Flum, J., Ziegler, M.: Topological model theory. Lecture Notes in Mathematics, Vol. 769. Berlin, Heidelberg, New York: Springer 1980. · Zbl 0421.03024
[4] Fuhrken, G.: Skolem type normal forms for first order languages with a generalized quantifier. Fund. Math.54, 291–302 (1964). · Zbl 0166.26001
[5] Garavaglia, S.: Model theory of topological structures. Ann. Math. Logic14, 13–37 (1978). · Zbl 0409.03041
[6] Magidor, M., Malitz, J.: Compact extensions ofL(Q). Ann. Math. Logic11, 217–261 (1977). · Zbl 0356.02012
[7] Makowsky, J.A., Tulipani, S.: Some model theory for monotone quantifiers. Arch. math. Logik18, 115–134 (1977). · Zbl 0365.02042
[8] Makowsky, J.A., Ziegler, M.: Topological model theory with an interior operator. Arch. math. Logik21, 37–54 (1981). · Zbl 0472.03027
[9] Sgro, J.: Completeness theorems for continuous functions and product topologies. Israel J. Math.25, 249–272 (1976). · Zbl 0344.54006
[10] Sgro, J.: Completeness theorems for topological models. Ann. Math. Logic11, 173–193 (1977). · Zbl 0387.03010
[11] Sgro, J.: The interior operator logic and product topologies. Transactions of the American Math. Soc.258, 99–112 (1980). · Zbl 0426.03039
[12] Slomson, A.B.: Some problems in mathematical logic. Thesis, Oxford 1967.
[13] Ziegler, M.: A language for topological structures which satisfies a Lindström theorem. Bull. Am. Math. Soc.82, 568–570 (1976). · Zbl 0338.02007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.