×

zbMATH — the first resource for mathematics

Approximation dans les espaces métriques et théorie de l’estimation. (French) Zbl 0506.62026

MSC:
62G05 Nonparametric estimation
41A45 Approximation by arbitrary linear expressions
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Assouad, P.: Espaces métriques, plongements, facteurs. Thèse d’Etat, Orsay (1976)
[2] Assouad, P.: Classes de Vapnik-?ervonenkis et vitesse d’estimation. Prépublication: Orsay 1982
[3] Bahadur, R.R.: Examples of inconsistency of maximum likelihood estimates. Sankhya 20, 207-210 (1958) · Zbl 0087.34202
[4] Beckenbach, E.F., Bellman, R.: Inequalities. Berlin-Heidelberg-New York: Springer 1961
[5] Birgé, L.: Vitesses optimales de convergence des estimateurs. Astérisque 68, 171-185 (1979)
[6] Birgé, L.: Sur un théorème de minimax et son application aux tests. Probab. Math. Statist. III, 2 [To appear 1983] · Zbl 0571.62036
[7] Birgé, L.: Robust testing for independent non-identically distributed variables and Markov chains. Dans: Specifying statistical models, pp. 134-162. New York-Heidelberg-Berlin: Springer 1983
[8] Bretagnolle, J., Huber, C.: Estimation des densités: risque minimax. Z. Wahrscheinlichkeitstheorie verw. Gebiete 47, 119-137 (1979) · Zbl 0413.62024
[9] ?encov, N.N.: Statistical decision rule and optimal inference. En russe. Moscou: Nauka 1972
[10] Dacunha-Castelle, D.: Ecole d’Eté de Probabilités de Saint-Flour VII. Berlin-Heidelberg-New York: Springer 1977
[11] Donsker, M.D., Varadhan, S.R.S.: Asymptotic evaluation of certain Markov process expectations for large time, I. Comm. Pure Appl. Math. 28, 1-47 (1975) · Zbl 0323.60069
[12] Farrell, R.H.: On the best obtainable asymptotic rates of convergence in estimation of a density function at a point. Ann. Math. Statist. 43, 170-180 (1972) · Zbl 0238.62049
[13] Farrell, R.H.: Asymptotic lower bounds for the risk of estimators of the value of a spectral density function. Z. Wahrscheinlichkeitstheorie verw. Gebiete 49, 221-234 (1979) · Zbl 0425.62075
[14] Huber, C: Thèse d’Etat: Orsay 1979
[15] Huber, P.J.: A robust version of the probability ratio test. Ann. Math. Statist. 36, 1753-1758 (1965) · Zbl 0137.12702
[16] Ibragimov, I.A., Khas’minskii, R.Z.: Statistical estimation, Asymptotic theory. New York-Heidelberg-Berlin: Springer 1981
[17] Ibragimov, I.A., Khas’minskii, R.Z.: On estimate of the density function. En russe. Zap. Nauchn. Semin. LOMI 98, 61-85 (1980)
[18] Ibragimov, I.A., Khas’minskii, R.Z.: On the non-parametric density estimates. En russe. Zap. Nauchn. Semin. LOMI 108, 73-89 (1981)
[19] Khas’minskii, R.Z.: A lower bound on the risks of non-parametric estimates of densities in the uniform metric. Theory Probability Appl. 23, 794-796 (1978) · Zbl 0449.62032
[20] Kolmogorov, A.N., Tihomirov, V.M.: ?-entropy and ?-capacity of sets in function spaces. Amer. Math. Soc. Transl. (2) 17, 277-364 (1961)
[21] Kraft, C.: Some conditions for consistency and uniform consistency of statistical procedures. Univ. of Calif. Publ. in Statistics 1, 125-142 (1955) · Zbl 0066.12202
[22] Le Cam, L.: Théorie asymptotique de la décision statistique. Presses de l’Université de Montréal: 1968
[23] Le Cam, L.: Convergence of estimates under dimensionality restrictions. Ann. Statist. 1, 38-53 (1973) · Zbl 0255.62006
[24] Le Cam, L.: On local and global properties in the theory of asymptotic normality of experiments. Dans: Stochastic processes and related topics 1, 13-54. New York-San Francisco-London: Academic Press 1975
[25] Le Cam, L.: An inequality concerning Bayes estimates. Prépublication (1979)
[26] Le Cam, L.: Asymptotic methods in statistical decision theory. Livre à paraître
[27] Lorentz, G.G.: Metric entropy and approximation. Bull. Amer. Math. Society 72, 903-937 (1966) · Zbl 0158.13603
[28] Lorentz, G.G.: Approximation of functions. New York: Holt, Rinehart, Winston 1966 · Zbl 0153.38901
[29] Okamoto, M.: Some inequalities relating to the partial sum of binomial probabilities. Ann. Inst. Statis. Math. 10, 29-35 (1958) · Zbl 0084.14001
[30] Pinsker, M.S.: Optimal filtration of square-integrable signals in gaussian noise. Problems of Inform. Transmission 16, 120-133 (1980) · Zbl 0452.94003
[31] Strasser, H.: Convergence of estimates: parts I and II. J. Multivariate Anal. 11, 127-172 (1981) · Zbl 0487.62032
[32] Vitushkin, A.G.: Theory of transmission and processing of information. New York: Pergamon Press 1961 · Zbl 0122.12001
[33] Wahba, G.: Optimal convergence properties of variable knot, kernel and orthogonal series methods for density estimation. Ann. Statist. 3, 15-29 (1975) · Zbl 0305.62021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.