×

zbMATH — the first resource for mathematics

On the spectrum of Schrödinger operators with a random potential. (English) Zbl 0506.60058

MSC:
60H25 Random operators and equations (aspects of stochastic analysis)
47B25 Linear symmetric and selfadjoint operators (unbounded)
81Q99 General mathematical topics and methods in quantum theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Albeverio, S., Fenstad J. E., Høegh-Krohn, R.: Singular perturbations and nonstandard analysis. Tran. Am. Math. Soc.252, 275-295 (1979) · Zbl 0424.35014 · doi:10.1090/S0002-9947-1979-0534122-5
[2] Albeverio, S., Høegh-Krohn, R.: Point interactions as Limits of short range interaction, Preprint, Bochum, 1980 · Zbl 0463.60087
[3] Avron, J. E., Grossmann, A., Rodriguez, R.: Spectral properties of reduced Bloch Hamiltonians. Ann. Phys.103, 47-63 (1977) · doi:10.1016/0003-4916(77)90259-7
[4] Borland, R. E.: Existence of energy gaps in one-dimensional liquids. Proc. Phys. Soc. (London)78, 926 (1960) · doi:10.1088/0370-1328/78/5/339
[5] Faris, W. G.: Self-adjoint operators. In: Lecture Notes in Mathematics Vol.433, Berlin: Springer 1975 · Zbl 0317.47016
[6] Flügge, S.: Rechenmethoden der Quantenmechanik, Berlin: Springer 1965
[7] Frisch, H. L., Lloyd, S. P.: Electron levels in a one-dimensional random lattice. Phys. Rev.120, 1175-1189 (1960); reprinted in [14] · Zbl 0093.23202 · doi:10.1103/PhysRev.120.1175
[8] Fakushima, M., Nagai, H., Nakao, S.: On an asymptotic property of spectra of random difference operator, Proc. Jpn. Acad.51, 100-102 (1975) · Zbl 0333.35027 · doi:10.3792/pja/1195518694
[9] Grossman, A., Høegh-Krohn, R., Mebkhout, M.: The one particle theory of point interactions; Commun. Math. Phys.77, 87-110 (1980) · doi:10.1007/BF01205040
[10] Halperin, B. I.: Properties of a particle in a one-dimensional random potential. Adv. Chem. Phys.13, 123-178 (1967) · doi:10.1002/9780470140154.ch6
[11] Kirsch, W., Martinelli, F.: On the ergodic properties of the spectrum of general random operators. Preprint, Bochum, 1980 · Zbl 0476.60058
[12] Kronig, R. de L., Penney, W. G.: Quantum mechanics of electrons in crystal lattices. Proc. R. Soc. (London)A130, 499-513 (1931); reprinted in [14] · JFM 57.1587.02
[13] Kunz, H.; Souillard, B.: Sur le spectre des opérateurs aux différences finies aléatoires, Commun. Math. Phys.78, 201-246 (1980) · Zbl 0449.60048 · doi:10.1007/BF01942371
[14] Lieb, E. H., Mattis, D. C.: Mathematical physics in one dimension. New York: Academic Press 1966
[15] Luttinger, J. M.: Wave propagation in one-dimensional structure. Philips Res. Rep.6, 303-310 (1951); reprinted in [14] · Zbl 0042.23402
[16] Morgan, J. D. III: Schrödinger operators whose potentials have separated singularities. J. Operat. Theory1, 109-115 (1979) · Zbl 0439.35022
[17] Nakao, S.: On the spectral distribution of the Schrödinger operator with random potential. Jpn. J. Math.3, 111-139 (1977) · Zbl 0375.60067
[18] Pastur, L. A.: Spectra of random selfadjoint operators. Russ. Math. Surv.28, 1-67 (1973) · Zbl 0277.60049 · doi:10.1070/RM1973v028n01ABEH001396
[19] Pastur, L. A.: Spectral properties of disordered systems in the one-body approximation. Commun. Math. Phys.75, 179-196 (1980) · Zbl 0429.60099 · doi:10.1007/BF01222516
[20] Reed, M., Simon, B.: Methods of modern mathematical physics, Vol. I, II, IV. New York: Academic Press 1978 · Zbl 0401.47001
[21] Saxon, D. S., Hutner, R. A.: Some electronic properties of a one-dimensional crystal model. Philips Res. Rep.4, 81-122 (1949)
[22] Weidmann, J.: Lineare Operatoren in Hilberträumen. Stuttgart: Teubner 1976 (english translation: Linear operators in Hilbert spaces Berlin: Springer 1980)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.