×

Analysis of large quasistatic deformations of inelastic bodies by a new hybrid-stress finite element algorithm. (English) Zbl 0505.73045


MSC:

74S05 Finite element methods applied to problems in solid mechanics
74S99 Numerical and other methods in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Love, A.E.H., A treatise on the mathematical theory of elasticity, (1944), Dover New York · Zbl 0063.03651
[2] Reissner, E., The effect of transverse shear deformation on the bending of elastic plates, J. appl. mech., 12, 2, 69-77, (1945)
[3] Pian, T.H.H., Derivation of element stiffness matrices by assumed stress distributions, Aiaa j., 2, 7, 1333-1336, (1964)
[4] Herrmann, L.R., Elasticity equation for incompressible materials by a variational theorem, Aiaa j., 3, 10, 1896-1900, (1965)
[5] de Veubeke, B.F., A new variational principle for finite elastic deformations, Internat. J. engrg. sci., 10, 745-763, (1972) · Zbl 0245.73031
[6] de Veubeke, B.F.; Millard, A., Discretization of stress field in the finite element method, J. franklin inst., 302, 5,6, 389-412, (1976) · Zbl 0352.73061
[7] Sander, G.; Carnoy, E., Equilibrium and mixed formulations in stability analysis, (), 87-105 · Zbl 0435.73084
[8] Koiter, W.T., Complementary energy, neutral equilibrium, and buckling, (), 183-200, Ser. B · Zbl 0376.73047
[9] Wunderlich, W.; Obrecht, H., Large spatial deformations of rods using generalized variational principles, (), 185-216 · Zbl 0465.73103
[10] Murakawa, H., Incremental hybrid finite element methods for finite deformation problems (with special emphasis on the complementary energy principle), ()
[11] Murakawa, H.; Atluri, S.N., Finite elasticity solutions using hybrid finite elements based on a complementary energy principle, J. appl. mech., 45, 539-548, (1978) · Zbl 0392.73038
[12] Murakawa, H.; Atluri, S.N., Finite elasticity solutions using hybrid finite elements based on a complementary energy principle—II: incompressible materials, J. appl. mech., 46, 71-78, (1979) · Zbl 0404.73075
[13] Murakawa, H.; Reed, K.W.; Atluri, S.N.; Rubinstein, R., Stability analysis of structures via a new complementary energy principle, (), 11-19 · Zbl 0455.73041
[14] Atluri, S.N.; Murakawa, H., New general and complementary energy theorems, finite strain, rate sensitive inelasticity and finite elements: some computational studies, (), 28-48 · Zbl 0465.73105
[15] Atluri, S.N., On some new general and complementary energy theorems for the rate problems of finite strain, classical elasto-plasticity, J. structural mech., 8, 1, 61-92, (1980)
[16] Levinson, M., The complementary energy theorem in finite elasticity, J. appl. mech., 87, 826-828, (1965)
[17] Zubov, L.M., The stationary principle of complementary work in nonlinear theory of elasticity, J. appl. math. mech., 34, 228-232, (1970), (transl. Prikl. Mat. Meh.) · Zbl 0224.73058
[18] Dill, E.H., The complementary energy principle in nonlinear elasticity, Lett. appl. engrg. sci., 5, 95-106, (1977)
[19] Argyris, J.H.; Vaz, L.E.; Willam, K.J., Improved solution methods for inelastic rate problems, Comput. meth. appl. mech. engrg., 16, 231-277, (1978) · Zbl 0405.73068
[20] Hughes, T.R.J.; Taylor, R.L., Unconditionally stable algorithms for quasi-static elasto-visco-plastic finite element analysis, Comput. structures, 8, 169-173, (1978) · Zbl 0365.73029
[21] Truesdell, C., The mechanical foundations of elasticity and fluid dynamics, () · Zbl 0046.17306
[22] Truesdell, C.; Noll, W., The nonlinear field theories of mechanics, () · Zbl 0779.73004
[23] Hill, R., Aspects of invariance in solid mechanics, Adv. appl. mech., 18, 1-75, (1978) · Zbl 0475.73026
[24] Fung, Y.C., Foundations of solid mechanics, (1965), Prentice-Hall Englewood Cliffs, NJ
[25] Prager, W., Introduction to the mechanics of continua, (1961), Ginn New York · Zbl 0094.18602
[26] Washizu, K., Variational methods in elasticity and plasticity, (1975), Pergamon London · Zbl 0164.26001
[27] Bellman, R., Stability theory of differential equations, (1953), McGraw-Hill New York · Zbl 0052.31505
[28] Reed, K.W.; Atluri, S.N., On the generalization of certain rate-type constitutive equations for very large strains, () · Zbl 0549.73065
[29] Hill, R., A general theory of uniqueness and stability in elastic-plastic solids, J. mech. phys. solids, 6, 236-249, (1958) · Zbl 0091.40301
[30] Key, S.W.; Biffle, J.H.; Krieg, D., A study of the computational and theoretical differences of two finite strain elastic-plastic constitutive models, ()
[31] Bazant, Z.P., A correlation study of formulations of incremental deformation and stability of continuous bodies, J. appl. mech., Discussion, 39, 632-634, (1972)
[32] Biot, M.A., Mechanics of incremental deformations, (1965), Wiley New York
[33] Durban, D.; Baruch, M., Natural stress rate, Quart. appl. math., 35, 55-61, (1977) · Zbl 0355.73014
[34] Hill, R.; Hutchinson, J.W., Bifurcation phenomena in the plane tension test, J. mech. phys. solids, 23, 239-264, (1975) · Zbl 0331.73048
[35] Churchill, R.V., Operational mathematics, (1972), McGraw-Hill New York · Zbl 0071.32505
[36] Reed, K.W., Analysis of large quasistatic deformations of inelastic solids by a new stress based finite element method, () · Zbl 0505.73045
[37] Cormeau, I., Numerical stability in quasistatic elasto-visco-plasticity, Internat. J. numer. meths. engrg., 9, 109-127, (1975) · Zbl 0293.73022
[38] Ergatoudis, I.; Irons, B.M.; Zienkiewicz, Q.C., Curved, isoparametric, quadrilateral elements for finite element analysis, Internat. J. solids structures, 4, 31-42, (1968) · Zbl 0152.42802
[39] Bathe, K.-J., Finite element procedures in engineering analysis, (1982), Prentice-Hall Englewood Cliffs, NJ
[40] Tong, P.; Pian, T.H.H., A variational principle and the convergence of a finite element method based on assumed stress distribution, Internat. J. solids structures, 5, 463-472, (1969) · Zbl 0167.52805
[41] Tong, P.; Rossettos, J.N., Finite element method; basic technique and implementation, (1977), MIT Press Cambridge, MA · Zbl 0293.73037
[42] Gear, C.W., Numerical initial value problems in ordinary differential equations, (1971), Prentice-Hall Englewood Cliffs, NJ · Zbl 0217.21701
[43] Conte, S.D.; de Boor, C., Elementary numerical analysis, (1972), McGraw-Hill New York · Zbl 0257.65002
[44] Zienkiewicz, O.C.; Cormeau, I.C., Visco-plasticity and creep in elastic solids—a unified numerical solution approach, Internat. J. numer. meths. engrg., 8, 821-845, (1974) · Zbl 0284.73021
[45] Truesdell, C.; Toupin, R.A., Classical field theories, (), 226-790
[46] Argyris, J.H.; Doltsinis, J.St.; Willam, K.J., New developments in the inelastic analysis of quasistatic and dynamic problems, Internat. J. numer. meths. engrg., 14, 1813-1850, (1979) · Zbl 0439.73075
[47] Reiner, M., The Deborah number, Phys. today, 17, 62, (1964)
[48] Huilgol, R.R., On the concept of the Deborah number, Trans. soc. rheology, 19, 297-306, (1975) · Zbl 0385.76016
[49] Willam, K.J., Numerical solution of inelastic rate processes, Comput. & structures, 8, 511-531, (1978) · Zbl 0374.73038
[50] Kanchi, M.B.; Zienkiewicz, O.C.; Owen, D.R.J., The visco-plastic approach to problems of plasticity and creep involving geometric nonlinear effects, Internat. J. numer. meths. engrg., 12, 169-181, (1978) · Zbl 0366.73032
[51] Hughes, T.J.R.; Winget, J., Finite rotation effects in numerical integration of rate constitutive equations arising in large-deformation analysis, Internat. J. numer. meths. engrg., 15, 1862-1867, (1980) · Zbl 0463.73081
[52] Key, S.W.; Stone, C.M.; Krieg, R.D., Dynamics relaxation applied to the quasi-static large deformation, inelastic response of axisymmetric solids, (), 585-620 · Zbl 0471.73077
[53] Rubinstein, R.; Atluri, S.N., Objectivity of incremental constitutive relations over finite time steps in computational finite deformation analysis, Comput. meths. appl. mech. engrg., 36, 277-290, (1983) · Zbl 0486.73081
[54] Schwerdtfeger, H., Introduction to linear algebra and the theory of matrices, (1961), Noordhoff Leyden · Zbl 0119.28601
[55] Hughes, T.J.R.; Liu, W.K., Nonlinear finite element analysis of shells: part I. three-dimensional shells, Comput. meths. appl. mech. engrg., 26, 331-362, (1981) · Zbl 0461.73061
[56] Zhong-Heng, G., Time derivatives of tensor fields in non-linear continuum mechanics, Arch. mech. stos., 15, 131-163, (1963), (English transl.)
[57] Goddard, J.D.; Miller, C., An inverse for the jaumann derivative and some applications to the rheology of viscoelastic fluids, Rheologica acta, 5, 177-184, (1966) · Zbl 0219.76004
[58] Meirovitch, L.M., Methods of analytical dynamics, (1970), McGraw-Hill New York
[59] Gantmacher, F.R., Applications of the theory of matrices, (1959), Interscience New York, (transl, of J.L. Brenner) · Zbl 0085.01001
[60] Petrie, C.J.S., Measures of deformation and convected derivatives, J. non-Newtonian fluid mech., 5, 147-176, (1979) · Zbl 0423.76008
[61] P.M. Pinsky, M. Ortiz and K.S. Pister, Rate constitutive equations in finite deformation analysis: theoretical aspects and numerical integration, Comput. Meths. Appl. Mech. Engrg. to appear. · Zbl 0504.73057
[62] Bird, R.B.; Hassager, O.; Abdel-Khalik, S.I., Co-rotational models and the goddard expansion, Aiche j., 20, 1041-1066, (1974)
[63] ()
[64] Bird, R.B.; Armstrong, R.C.; Hassager, O., ()
[65] Laun, H.M., Description of the non-linear shear behavior of a low density polyethylene melt by means of an experimentally determined strain dependent memory function, Rheologica acta, 17, 1-15, (1978)
[66] Oldroyd, J.G., On the formulation of rheological equations of state, (), 523-541 · Zbl 1157.76305
[67] Petrie, C.J.S., Elongational flows, (1979), Pitman London · Zbl 0399.76007
[68] Spiegel, M.R., Vector analysis, (1959), McGraw-Hill New York
[69] Argyris, J.H.; Doltsinis, J.St., On the integration of inelastic stress-strain relations, Res. mech. lett., 1, 343-355, (1981), Part 1 and Part 2 · Zbl 0489.73126
[70] Argyris, J.H., An excursion into large rotations, Comput. meths. appl. mech. engrg., 32, 85-155, (1982) · Zbl 0505.73064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.