×

zbMATH — the first resource for mathematics

Three algorithms for interpreting models consisting of ordinary differential equations: Sensitivity coefficients, sensitivity functions, global optimization. (English) Zbl 0504.93022

MSC:
93B35 Sensitivity (robustness)
92C50 Medical applications (general)
93C15 Control/observation systems governed by ordinary differential equations
93B40 Computational methods in systems theory (MSC2010)
93C10 Nonlinear systems in control theory
92Cxx Physiological, cellular and medical topics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bahill, A.T.; Clark, M.R.; Stark, L., Glissades—eye movements generated by mismatched components of the saccadic motoneuronal control signal, Math. biosci., 26, 303-318, (1975)
[2] Bahill, A.T.; Hsu, F.K.; Stark, L., Glissadic overshoots are due to pulse width errors, Arch. neurol., 35, 138, (1978)
[3] Bahill, A.T.; Clark, M.R.; Stark, L., Dynamic overshoot in saccadic eye movements is caused by neurological control signal reversals, Exper. neurology, 48, 107, (1975)
[4] Bahill, A.T.; Brockenbrough, A.; Troost, B.T., Variability and development of a normative data base for saccadic eye movements, Investigative opth. and vis. sci., 21, (1981)
[5] Bahill, A.T., Development, validation and sensitivity analyses of human eye movement models, Crit. rev. bionengrg., 4, 311, (1980)
[6] Barmack, N.H.; Bell, C.C.; Rence, B.G., Tension and rate of tension development during isometric responses of extraocular muscles, J. neurophysiol., 34, 1072-1079, (1971)
[7] Bremermann, H.J.; Lam, L.S.B., Analysis of spectra with nonlinear superposition, Math. biosci, 8, 449-461, (1969)
[8] Bremermann, H.J., A method of unconstrained global optimization, Math. biosci., 9, 1, (1970) · Zbl 0212.51204
[9] Bremermann, H.J., A method of unconstrained global optimization, Math. biosci., 9, 1-15, (1970) · Zbl 0212.51204
[10] Clark, M.R., The time optimal and nonlinear system dynamics of human eye tracking movements, ()
[11] Clark, M.R.; Stark, L., Time optimal behavior of human saccadic eye movement, IEEE trans. automatic control, AC-20, 345-348, (1975)
[12] Clark, M.R.; Stark, L., Sensitivity of control parameters in a model of saccadic eye tracking and estimation of resultant nervous activity, Bull. math. biol., 38, 39-57, (1976)
[13] Cook, G.; Stark, L., The human eye movement mechanism: experiments, modelling and model testing, Arch. ophthal., 79, 428-436, (1968)
[14] Frank, P.M., Introduction to system sensitivity theory, (1978), Academic New York · Zbl 0464.93001
[15] Hsu, F.K.; Bahill, A.T.; Stark, L., Parametric sensitivity analysis of a homeomorphic model for saccadic and vergence eye movements, Comput. prog. biomedicine, 6, 108-116, (1976)
[16] Lehman, S.L.; Stark, L., Simulation of linear and nonlinear eye movement models: sensitivity analyses and enumeration studies of time optimal control, Cybernetics and information sci., 4, 21-43, (1980)
[17] Milstein, J., Ph.D. dissertation, (1975), Univ. of California Berkeley
[18] Pontryagin, L.S.; Boltyanskii, V.C.; Gamkrendze, R.V.; Mischenko, E.F., The mathematical theory of optimal processes, (), transl. by K. N. Trirogoff
[19] Robinson, D.A., The mechanics of human saccadic eye movements, J. physiol., 174, 245-264, (1964)
[20] Tomovic, R.; Vukobratovic, M., General sensitivity theory, (1972), American Elsevier New York · Zbl 0302.93014
[21] Westheimer, G., Mechanism of saccadic eye movements, AMA arch. ophthal., 52, 710-724, (1954)
[22] Zangemeister, W.H.; Lehman, S.; Stark, L., Simulation of head movement trajectories: model fit to main sequence, Biol. cybernetics, 41, 19, (1981)
[23] Zangemeister, W.H.; Lehman, S.; Stark, L., Sensitivity analysis and optimization for a head movement model, Biol. cybernetics, 41, 33, (1981)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.