×

zbMATH — the first resource for mathematics

Numerical integration of rate constitutive equations in finite deformation analysis. (English) Zbl 0504.73057

MSC:
74S30 Other numerical methods in solid mechanics (MSC2010)
74B20 Nonlinear elasticity
74S99 Numerical and other methods in solid mechanics
65D30 Numerical integration
Software:
Nike2D
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] McMeeking, R.M.; Rice, J.R., Finite element formulations for problems of large elastic-plastic deformation, Internat. J. solids and structures, 11, 601-616, (1975) · Zbl 0303.73062
[2] Needleman, A., A numerical study of necking in circular cylindrical bars, J. mech. phys. solids, 20, 111-127, (1972) · Zbl 0236.73077
[3] Nemat-Nasser, S.; Taya, M., Model studies of ductile fracture—I. formulation, J. franklin inst., 302, 463-472, (1976) · Zbl 0352.73077
[4] Osias, J.R.; Swedlow, J.L., Finite elasto-plastic deformation—I. theory and numerical examples, Internat. J. solids and structures, 10, 321-338, (1974) · Zbl 0273.73033
[5] Hutchinson, J.W., Finite strain analysis of elastic-plastic solids and structures, (), 17-29
[6] Nagtegaal, J.C.; Parks, D.M.; Rice, J.R., On numerically accurate finite element solutions in the fully plastic range, Comput. meths. appl. mech. engrg., 4, 153-177, (1974) · Zbl 0284.73048
[7] Hill, R., Eigenmodel deformations in elastic/plastic continua, J. mech. phys. solids, 15, 371-386, (1967)
[8] Hill, R., Some basic principles in the mechanics of solids without a natural time, J. mech. phys. solids, 7, 209-225, (1959) · Zbl 0086.17301
[9] Hibbitt, H.D.; Marcal, P.V.; Rice, J.R., A finite element formulation for problems of large strain and large displacement, Internat. J. solids and structures, 6, 1069-1086, (1970) · Zbl 0214.24603
[10] Nagtegaal, J.C.; DeJong, J.E., Some computational aspects of elastic-plastic large strain analysis, Internat. J. numer. meths. engrg., 17, 15-41, (1981) · Zbl 0463.73080
[11] Key, S.W., A finite element procedure for the large deformation dynamic response of axisymmetric solids, Comput. meths. appl. mech. engrg., 4, 195-218, (1974) · Zbl 0284.73047
[12] Argyris, J.H.; Vaz, L.E.; Willam, K.J., Improved solution methods for inelastic rate problems, Comput. meths. appl. mech. engrg., 16, 231-277, (1978) · Zbl 0405.73068
[13] Key, S.W.; Stone, C.M.; Krieg, R.D., Dynamic relaxation applied to the quasi-static, large deformation, inelastic response of axisymmetric solids, () · Zbl 0471.73077
[14] Hallquist, J.O., NIKE2D: an implicit, finite deformation, finite element code for analyzing the static and dynamic response of two dimensional solids, () · Zbl 0319.70015
[15] Pinsky, P.M., A numerical formulation for the finite deformation problem of solids with rate-independent constitutive equations, ()
[16] Krieg, R.D.; Key, S.W., Implementation of a time-independent plasticity theory into structural computer programs, (), 125
[17] Hughes, T.J.R.; Winget, J., Finite rotation effects in numerical integration of rate constitutive equations arising in large-deformation analysis, Internat. J. numer. meths. engrg., 15, 12, 1862-1867, (1980) · Zbl 0463.73081
[18] Durban, D.; Baruch, M., Incremental behavior of an elasto-plastic continuum, () · Zbl 0347.73037
[19] Marsden, J.E.; Hughes, T.J.R., Topics in the mathematical foundations of elasticity, (), 30-285
[20] Truesdell, C.A.; Noll, W., The non-linear field theories of mechanics, () · Zbl 0779.73004
[21] Gear, G.W., Numerical initial value problems in ordinary differential equations, (1971), Prentice-Hall Englewood Cliffs, NJ
[22] Gurtin, M.E., Topics in finite elasticity, () · Zbl 0579.73016
[23] Ebin, D.G.; Marsden, J.E., Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of math., 92, 102-163, (1970) · Zbl 0211.57401
[24] Truesdell, C., The simplest rate theory of pure elasticity, Comm. pure appl. math., 8, 123-132, (1955) · Zbl 0064.42003
[25] Oldroyd, J.G., On the formulation of rheological equations of state, (), 523-541 · Zbl 1157.76305
[26] Cotter, B.A.; Rivlin, R.S., Tensors associated with time-dependent stress, Quart. appl. math., 13, 177-182, (1955) · Zbl 0065.39603
[27] Jaumann, G., Geschlossenes system physikalischer und chemischer differentialgesetze, Sitzungsber. akad. wiss. wien, 120, 2a, 385-530, (1911) · JFM 42.0854.05
[28] Prager, W., Introduction to mechanics of continua, (1961), Ginn New York · Zbl 0094.18602
[29] Hughes, T.J.R., Unconditionally stable algorithms for nonlinear heat conduction, Comput. meths. appl. mech. engrg., 10, 135-139, (1977)
[30] Hughes, T.J.R., Stability of one-step methods in transient nonlinear heat conduction, () · Zbl 0533.73002
[31] Prager, W.; Hodge, P.G., Theory of perfectly plastic solids, (1963), Wiley New York
[32] Green, A.E.; Naghdi, P.M., A general theory of an elastic-plastic continuum, Arch. rational mech. anal., 18, 251-281, (1965) · Zbl 0133.17701
[33] Dienes, J.K., On the analysis of rotation and stress rate in deforming bodies, Acta mech., 32, 217-232, (1979) · Zbl 0414.73005
[34] Pinsky, P.M.; Pister, K.S.; Taylor, R.L., Formulation and numerical integration of elastoplastic and elasto-viscoplastic rate constitutive equations, Rept. no. UCB/SESM-82/05, (1982)
[35] Johnson, G.C.; Bammann, D.J., A discussion of stress rates in finite deformation problems, (), 82-8821
[36] Argyris, J.H.; Doltsinis, J.St.; Pimenta, P.M.; Wüstenberg, H., Thermomechanical response of solids at high strains—natural approach, (), 3-57 · Zbl 0505.73062
[37] Argyris, J.H.; Doltsinis, J.St., On the large strain inelastic analysis in natural formulation—part I. quasistatic problems, Comput. meths. appl. mech. engrg., 20, 213-252, (1980) · Zbl 0437.73065
[38] Argyris, J.H.; Doltsinis, J.St., On the large strain inelastic analysis in natural formulation—part II. dynamic problems, Comput. meths. appl. mech. engrg., 21, 91-128, (1980) · Zbl 0437.73067
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.