Schreiber, R.; Keller, H. B. Driven cavity flows by efficient numerical techniques. (English) Zbl 0503.76040 J. Comput. Phys. 49, 310-333 (1983). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 140 Documents MSC: 76D05 Navier-Stokes equations for incompressible viscous fluids 76M99 Basic methods in fluid mechanics Keywords:steady; plane; driven cavity; Reynolds number 10.000; 180 x 180 grid; efficient linear system solver; adaptive Newton-like method; nonlinear; continuation procedure for branch of solutions PDF BibTeX XML Cite \textit{R. Schreiber} and \textit{H. B. Keller}, J. Comput. Phys. 49, 310--333 (1983; Zbl 0503.76040) Full Text: DOI OpenURL References: [1] Benjamin, A.S.; Denny, V.E., On the convergence of numerical solutions for 2-D flows in a cavity at high re, J. comput. phys., 12, 348, (1973) [2] Ghia, U.; Ghia, K.N.; Shin, C.T., Solution of incompressible Navier-Stokes equations by coupled strongly-implicit multigrid method, () · Zbl 0511.76031 [3] Keller, H.B., () [4] Roache, J., Computational fluid dynamics, (1972), Hermosa Albequerque, N. Mex · Zbl 0251.76002 [5] Schreiber, R., Finite-difference methods for singular perturbation and Navier-Stokes problems, () [6] Schreiber, R.S.; Keller, H.B., Spurious solutions in driven cavity calculations, J. comput. phys., 49, 165, (1983) · Zbl 0502.76044 [7] Tuann, S.-Y.; Olson, M.D., Review of computing methods for recirculating flows, J. comput. phys., 29, 1, (1978) · Zbl 0427.76028 [8] Winters, K.H.; Cliffs, K.A., A finite element study of laminar flows in a square cavity, UKAERE harwell report R9444, (1979) [9] Wood, W.W., Boundary layers whose streamlines are closed, J. fluid mech., 2, 77, (1957) · Zbl 0077.19401 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.