×

zbMATH — the first resource for mathematics

An approximate zero-one law. (English) Zbl 0501.60043

MSC:
60F20 Zero-one laws
60K99 Special processes
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Broadbent, S.R., Hammersley, J.M.: Percolation processes. I, II. Proc. Cambridge Philos. Soc. 53, 629-641 and 642-645 (1959) · Zbl 0091.13901 · doi:10.1017/S0305004100032680
[2] Hewitt, E., Savage, L.J.: Symmetric measures on cartesian products. Trans. Amer. Math. Soc. 80, 470-501 (1955) · Zbl 0066.29604 · doi:10.1090/S0002-9947-1955-0076206-8
[3] Kesten, H.: The critical probability of bond percolation on the square lattice equals 1/2. Comm. Math. Phys. 74, 41-59 (1980) · Zbl 0441.60010 · doi:10.1007/BF01197577
[4] Kesten, H.: Exact results in percolation (preprint)
[5] Russo, L.: On the critical percolation probabilities. Z.Wahrscheinlichkeitstheorie verw. Geb. 56, 229-237 (1981) · Zbl 0457.60084 · doi:10.1007/BF00535742
[6] Russo, L.: A note on percolation. Z.Wahrscheinlichkeitstheorie verw. Geb. 43, 39-48 (1978) · Zbl 0363.60120 · doi:10.1007/BF00535274
[7] Seymour, P.D., Welsh, D.J.A.: Percolation probabilities on the square lattice. Ann. Discrete Math. 3, 227-245 (1978) · Zbl 0405.60015 · doi:10.1016/S0167-5060(08)70509-0
[8] Wierman, J.C.: Bond percolation on honeycomb and triangular lattices (preprint) · Zbl 0457.60085
[9] Fisher, M.E.: Critical probabilities for cluster size and percolation problems. J. Math. Phys. 2, 620-627 (1961) · Zbl 0105.43602 · doi:10.1063/1.1703746
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.