Lichtenstein, Woody A system of quadrics describing the orbit of the highest weight vector. (English) Zbl 0501.22017 Proc. Am. Math. Soc. 84, 605-608 (1982). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 20 Documents MSC: 22E46 Semisimple Lie groups and their representations 51N15 Projective analytic geometry Keywords:highest weight vector; orbit PDF BibTeX XML Cite \textit{W. Lichtenstein}, Proc. Am. Math. Soc. 84, 605--608 (1982; Zbl 0501.22017) Full Text: DOI References: [1] Daniel Drucker, Exceptional Lie algebras and the structure of Hermitian symmetric spaces, Mem. Amer. Math. Soc. 16 (1978), no. 208, iv+207. · Zbl 0395.17009 · doi:10.1090/memo/0208 · doi.org [2] Hans Freudenthal, Sur le groupe exceptionnel \?\(_{7}\), Nederl. Akad. Wetensch. Proc. Ser. A. 56=Indagationes Math. 15 (1953), 81 – 89 (French). · Zbl 0052.02404 [3] Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley-Interscience [John Wiley & Sons], New York, 1978. Pure and Applied Mathematics. · Zbl 0408.14001 [4] Nathan Jacobson, Structure and representations of Jordan algebras, American Mathematical Society Colloquium Publications, Vol. XXXIX, American Mathematical Society, Providence, R.I., 1968. · Zbl 0218.17010 [5] André Lichnerowicz, Sur les espaces homogènes kählériens, C. R. Acad. Sci. Paris 237 (1953), 695 – 697 (French). · Zbl 0051.13102 [7] Deane Montgomery, Simply connected homogeneous spaces, Proc. Amer. Math. Soc. 1 (1950), 467 – 469. · Zbl 0041.36309 [8] J. P. Serre, Représentations linéaires et espaces homogènes Kählériens des groupes de Lie compacts, Séminaire Bourbaki No. 100, 1954. [9] J. Tits, Le plan projectif des octaves et les groupes exceptionnels \?\(_{6}\) et \?\(_{7}\), Acad. Roy. Belgique. Bull. Cl. Sci. (5) 40 (1954), 29 – 40 (French). · Zbl 0055.13903 [10] -, Sur certaines classes d’espaces homogènes de groupes de Lie, Acad. Roy. Belg. Cl. Sci. Mem. Collect. 29 (1955-56). [11] Hsien-Chung Wang, Closed manifolds with homogeneous complex structure, Amer. J. Math. 76 (1954), 1 – 32. · Zbl 0055.16603 · doi:10.2307/2372397 · doi.org This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.