×

zbMATH — the first resource for mathematics

On additive bases and harmonious graphs. (English) Zbl 0499.05049

MSC:
05C99 Graph theory
05C35 Extremal problems in graph theory
11B13 Additive bases, including sumsets
05A10 Factorials, binomial coefficients, combinatorial functions
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Remarks on the postage stamp problem with applications to computersProceedings of the Eighth Southeastern Conference on Combinatorics, Graph Theory and Computing (Louisiana State Univ., Baton Rouge, La., 1977)Utilitas Math.Winnipeg, Man.197743-59. Congressus Numerantium, No. XIX
[2] Alter, R.; Barnett, J. A., A postage stamp problem, Amer. Math. Monthly, 87, 206, (1980) · Zbl 0432.10032
[3] Baron, G.; Erdös, P., Über verallgemeinerungen des langford’schen problems, Combinatorial theory and its applications, I (Proc. Colloq., Balatonfüred, 1969), 81, (1970), North-Holland, Amsterdam · Zbl 0215.33301
[4] Baumert, LeonardD., Cyclic difference sets, (1971) · Zbl 0218.05009
[5] ProblemCombinatoricsColloq. Math. Soc. János BolyaiVol. 18North-HollandAmsterdam197811902 vols.
[6] Bermond, J.-C.; Brouwer, A. E.; Germa, A., Systèmes de triplets et différences associées, Problèmes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), 260, 35, (1978), CNRS, Paris · Zbl 0412.05012
[7] Bermond, J.-C.; Kotzig, A.; Turgeon, J.; Hajnal, A.; Sós, V. T., On a combinatorial problem of antennas in radioastronomy, Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. I, 18, 135, (1978), North-Holland, Amsterdam · Zbl 0396.05008
[8] Best, M. R.; Brouwer, A. E.; MacWilliams, F. Jessie; Odlyzko, AndrewM.; Sloane, NeilJ. A., Bounds for binary codes of length less than \(25\), IEEE Trans. Infomation Theory, IT-24, 81, (1978) · Zbl 0369.94011
[9] Bloom, GaryS., A chronology of the ringel-kotzig conjecture and the continuing quest to call all trees graceful, Topics in graph theory (New York, 1977), 328, 32, (1979), New York Acad. Sci., New York · Zbl 0465.05027
[10] Bloom, GaryS.; Golomb, SolomonW., Numbered complete graphs, unusual rulers, and assorted applications, Theory and applications of graphs (Proc. Internat. Conf., Western Mich. Univ., Kalamazoo, Mich., 1976), (1978), Springer, Berlin · Zbl 0426.05049
[11] Bloom, G. S.; Golomb, S. W., Applications of numbered undirected graphs, Proc. IEEE, 65, 562, (1977)
[12] Bodendiek, R.; Schumacher, H.; Wegner, H., Über graziöse graphen, Math.-Phys. Semesterber., 24, 103, (1977) · Zbl 0353.05049
[13] Bose, R. C.; Chowla, S., Theorems in the additive theory of numbers, Comment. Math. Helv., 37, 141, (19621963) · Zbl 0109.03301
[14] de Bruijn, N. G., On the factorization of finite abelian groups, Nederl. Akad. Wetensch. Proc. Ser. A. 56=Indagationes Math., 15, 258, (1953) · Zbl 0050.25704
[15] de Bruijn, N. G., On the factorization of cyclic groups, ibid, 370 · Zbl 0051.25803
[16] de Bruijn, N. G., On number systems, Nieuw Arch. Wisk. (3), 4, 15, (1956) · Zbl 0073.02704
[17] Cahit, J.; Cahit, R., On the graceful numbering of spanning trees, Information Processing Lett., 3, 115, (197475) · Zbl 0298.68033
[18] Carlitz, L.; Moser, L., On some special factorizations of \((1-x\sp{n})/ (1-x)\), Canad. Math. Bull., 9, 421, (1966) · Zbl 0145.04804
[19] Davies, RoyO., On Langford’s problem. II, Math. Gaz., 43, 253, (1959) · Zbl 0116.01103
[20] The generalized langford-Skolem problemProceedings of the Fourth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1973)Utilitas Math.Winnipeg, Man.1973237247
[21] Erdo˝s, P.; Graham, R. L., Old and new problems and results in combinatorial number theory, 128, (1980) · Zbl 0434.10001
[22] Erdo˝s, P.; Hanani, H., On a limit theorem in combinatorial analysis, Publ. Math. Debrecen, 10, 10, (1963) · Zbl 0122.24802
[23] Erdös, P.; Turán, P., On a problem of sidon in additive number theory, and on some related problems, J. London Math. Soc., 16, 212, (1941) · Zbl 0061.07301
[24] Frucht, Roberto, Graceful numbering of wheels and related graphs, Second International Conference on Combinatorial Mathematics (New York, 1978), 319, 219, (1979), New York Acad. Sci., New York · Zbl 0485.05059
[25] Gardner, M., Mathematical games: the graceful graphs of Solomon golomb, or how to number a graph parsimoniously, Scientific American, 226, 108, (1972)
[26] Golay, MarcelJ. E., Notes on the representation of \(1,\,2,\,… ,\,n\) by differences, J. London Math. Soc. (2), 4, 729, (1972) · Zbl 0244.10050
[27] Golomb, SolomonW.; Read, R. C., How to number a graph, Graph theory and computing, 23, (1972), Academic Press, New York · Zbl 0293.05150
[28] Golomb, S. W., The largest graceful subgraph of the complete graph, Amer. Math. Monthly, 81, 499, (1974) · Zbl 0281.05113
[29] Multifarious applications of numbered graphsProc. 2nd Caribbean Conference on Combinatorics and ComputingUniv, of West Indies, Cave HillBarbados19778295
[30] Graham, R. L.; Sloane, N. J. A., Lower bounds for constant weight codes, IEEE Trans. Inform. Theory, 26, 37, (1980) · Zbl 0441.94012
[31] On constant weight codes and harmonious graphsUtilitas Math., to appear
[32] Guy, R. K., Monthly research problems 1969–73, Amer. Math. Monthly, 80, 1120, (1973)
[33] Guy, R. K., Monthly research problems, 1969–75, ibid., 82, 995, (1975) · Zbl 0334.00006
[34] Guy, RichardK., Packing \([1,n]\) with solutions of \(ax+by=cz\). the unity of combinatorics, Colloquio Internazionale sulle Teorie Combinatorie (Rome, 1973), Tomo II, (1976), Accad. Naz. Lincei, Rome · Zbl 0361.05012
[35] Guy, R. K., Monthly research problems 1969–77, Amer. Math. Monthly, 84, 807, (1977) · Zbl 0379.50004
[36] Guy, R. K.; Klee, Jr., V. L., Monthly research problems 1969–71, Amer. Math. Monthly, 78, 1113, (1971) · Zbl 0334.00006
[37] Gyárfás, A.; Lehel, J., A method to generate graceful trees, Problèmes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), 260, 207, (1978), CNRS, Paris · Zbl 0412.05034
[38] Hämmerer, Norbert; Hofmeister, Gerd, Zu einer vermutung von rohrbach, J. Reine Angew. Math., 286/287, 239, (1976) · Zbl 0332.10032
[39] Härtter, Erich, Basen für gitterpunktmengen, J. Reine Angew. Math., 202, 153, (1959) · Zbl 0091.04603
[40] Hajós, G., Sur la factorisation des groupes abéliens, Časopis Pěst. Mat. Fys., 74, (1949) · Zbl 0039.01901
[41] Hajós, G., Sur le problème de factorisation des groupes cycliques, Acta Math. Acad. Sci. Hungar., 1, 189, (1950) · Zbl 0041.15702
[42] Halberstam, H.; Roth, K. F., Sequences. Vol. I, (1966) · Zbl 0141.04405
[43] Hall, J. I.; Jansen, A. J. E. M.; Kolen, A. W. J.; van Lint, J. H., Equidistant codes with distance \(12\), Discrete Math., 17, 71, (1977) · Zbl 0355.94017
[44] Hanani, Haim, A note on Steiner triple systems, Math. Scand., 8, 154, (1960) · Zbl 0100.01802
[45] Haselgrove, C. B.; Leech, John, Note on restricted difference bases, J. London Math. Soc., 32, 228, (1957) · Zbl 0082.03705
[46] Heath-Brown, D. R.; Iwaniec, H., On the difference between consecutive primes, Bull. Amer. Math. Soc. (N.S.), 1, 758, (1979) · Zbl 0414.10043
[47] Heimer, RichardL.; Langenbach, Herbert, The stamp problem, J. Recreational Math., 7, 235, (1974)
[48] Hoede, C.; Kuiper, H., All wheels are graceful, Utilitas Math., 14, 311, (1978) · Zbl 0397.05048
[49] Isbell, JohnR., Perfect addition sets, Discrete Math., 24, 13, (1978) · Zbl 0388.05004
[50] Klotz, Walter, Eine obere schranke für die reichweite einer extremalbasis zweiter ordnung, J. Reine Angew. Math., 238, 161, (1969) · Zbl 0179.06901
[51] Koh, K. M.; Tan, T.; Rogers, D. G., Two theorems on graceful trees, Discrete Math., 25, 141, (1979) · Zbl 0414.05019
[52] Kotzig, Anton, On certain vertex-valuations of finite graphs, Utilitas Math., 4, 261, (1973) · Zbl 0277.05102
[53] Kotzig, Anton; Rosa, Alexander, Magic valuations of finite graphs, Canad. Math. Bull., 13, 451, (1970) · Zbl 0213.26203
[54] Kotzig, A.; Turgeon, J.; Hajnal, A.; Sós, V. T., \(β\)-valuations of regular graphs with complete components, Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. II, 18, 697, (1978), North-Holland, Amsterdam · Zbl 0394.05027
[55] Lam, ClementW. H., Nth power residue addition sets, J. Combinatorial Theory Ser. A, 20, 20, (1976) · Zbl 0334.05030
[56] Langford, C. D., Problem, Math. Gazette, 42, 228, (1958)
[57] Leech, John, On the representation of \(1,2,⋯,n\) by differences, J. London Math. Soc., 31, 160, (1956) · Zbl 0072.03401
[58] Leech, J., Another tree labelling problem, Amer. Math. Monthly, 82, 923, (1975) · Zbl 0322.05103
[59] Levine, E., On the generalized langford problem, Fibonacci Quarterly, 6, 135, (1968) · Zbl 0167.31401
[60] Lunnon, W. F., A postage stamp problem, Comput. J., 12, 377, (1969)
[61] McCarthy, D.; Mullin, R. C.; Schellenberg, P. J.; Stanton, R. G.; Vanstone, S. A., On approximations to a projective plane of order 6, Ars Combinatoria, 2, 111, (1976) · Zbl 0352.05019
[62] MacWilliams, F. J.; Sloane, N. J. A., The theory of error-correcting codes, (1977) · Zbl 0369.94008
[63] Maheo, Maryvonne, Strongly graceful graphs, Discrete Math., 29, 39, (1980) · Zbl 0438.05055
[64] Miller, J. C. P.; Atkin, A. O. L.; Birch, B. J., Difference bases. three problems in additive number theory, Computers in number theory (Proc. Sci. Res. Council Atlas Sympos. No. 2, Oxford, 1969), 299, (1971), Academic Press, London · Zbl 0217.32802
[65] Moser, L., On the representation of \(1,\,2,⋯,n\) by sums, Acta Arith., 6, 11, (1960) · Zbl 0104.03803
[66] Moser, L.; Pounder, J. R.; Riddell, J., On the cardinality of h-bases for n, J. London Math. Soc., 44, 397, (1969) · Zbl 0186.36003
[67] Nathanson, MelvynB., Additive h-bases for lattice points, Second International Conference on Combinatorial Mathematics (New York, 1978), 319, 413, (1979), New York Acad. Sci., New York · Zbl 0482.05008
[68] Masters ThesisGeneralizations of the langford-Skolem problemM.Sc. ThesisUniversity of Calgary1975
[69] Priday, C. J., On Langford’s problem. I, Math. Gaz., 43, 250, (1959) · Zbl 0107.24904
[70] Hebbare, S. P. R., Graceful cycles, Utilitas Math., 10, 307, (1976) · Zbl 0341.05119
[71] Rohrbach, H., Ein beitrag zur additiven zahlentheorie, Math. Zeit., 42, 1, (1937) · Zbl 0015.20002
[72] Rohrbach, H., Anwendung eines satzes der additiven zahlentheorie auf eine grappenthearetische frage, ibid., 538 · Zbl 0016.15602
[73] Rosa, A., On certain valuations of the vertices of a graph, Theory of Graphs (Internat. Sympos., Rome, 1966), 349, (1967), Gordon and Breach, New York · Zbl 0193.53204
[74] Distributions of integers into s-tuples with given differencesProceedings of the Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1971)Dept. Comput. Sci., Univ. Manitoba, Winnipeg, Man.19713142
[75] Roselle, D. P., Comments and complements, Amer. Math. Monthly, 81, 1097, (1974) · Zbl 0281.05106
[76] Roselle, D. P.; Thomasson, Jr., T. C., On generalized langford sequences, J. Combinatorial Theory Ser. A, 11, 196, (1971) · Zbl 0222.05024
[77] Sands, ArthurD., On the factorisation of finite abelian groups, Acta Math. Acad. Sci. Hungar., 8, 65, (1957) · Zbl 0079.03303
[78] Sands, A. D., The factorization of abelian groups, Quart. J. Math. Oxford Ser. (2), 10, 81, (1959) · Zbl 0087.25604
[79] Schönheim, J., On maximal systems of k-tuples, Studia Sci. Math. Hungar, 1, 363, (1966) · Zbl 0146.01403
[80] Synch-sets: a variant of difference setsProceedings of the Fifth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1974)Utilitas Math.Winnipeg, Man.1974625-645. Congressus Numerantium, No. X
[81] Skolem, Th., On certain distributions of integers in pairs with given differences, Math. Scand., 5, 57, (1957) · Zbl 0084.04304
[82] Some tables for the postage stamp problemProceedings of the Fourth Manitoba Conference on Numerical Mathematics (Winnipeg, Man., 1974)Utilitas Math.Winnipeg, Man.1975351-356. Congr. Numer., No. XII
[83] Stanton, R. G.; Kalbfleisch, J. G.; Mullin, R. C.; Bose, R. C., Covering and packing designs, Proc. Second Chapel Hill Conf. on Combinatorial Mathematics and its Applications (Univ. North Carolina, Chapel Hill, N.C., 1970), 428, (1970), Univ. North Carolina, Chapel Hill, N.C. · Zbl 0213.02801
[84] Labelling of balanced treesProceedings of the Fourth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1973)Utilitas Math.Winnipeg, Man.1973479495
[85] Stöhr, Alfred, Gelöste und ungelöste fragen über basen der natürlichen zahlenreihe. I, II, J. Reine Angew. Math., 194, (1955) · Zbl 0066.03101
[86] Taylor, H., Odd path sums in an edge-labeled tree, Math. Mag., 50, 258, (1977) · Zbl 0445.05062
[87] Wichmann, B., A note on restricted difference bases, J. London Math. Soc., 38, 465, (1963) · Zbl 0123.04302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.