×

zbMATH — the first resource for mathematics

Collineation groups of compact connected projective planes. (English) Zbl 0498.51014

MSC:
51H10 Topological linear incidence structures
54H15 Transformation groups and semigroups (topological aspects)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R. Baer, Projeotivities with fixed points on every line of the plane. Bull. Amer. Math. Soc.52, 273-286 (1946). · Zbl 0061.30810 · doi:10.1090/S0002-9904-1946-08557-2
[2] R. F.Brown, The Lefschetz fixed point theorem. Glenview, Ill. 1971. · Zbl 0216.19601
[3] A.Dold, Halbexakte Homotopiefunktoren. LNM12, Berlin-Heidelberg-New York 1966.
[4] H. Hähl, Eine Klassifikation achtdimensionaler lokalkompakter Translationsebenen nach ihrer Kollineationsgruppe. Habilitationsschrift, Tübingen 1976.
[5] H. Hähl, Zur Klassifikation von 8- und 16-dimensionalen lokalkompakten Translations-ebenen nach ihren Kollineationsgruppen. Math. Z.159, 259-294 (1978). · Zbl 0381.51009 · doi:10.1007/BF01214575
[6] S. T.Hu, Theory of retracts. Detroit 1965. · Zbl 0145.43003
[7] W.Hurewicz and H.Wallman, Dimension Theory, Princeton University Press 1948. · Zbl 0036.12501
[8] R. Löwen, Locally compact connected groups acting on euclidean space with Lie isotropy groups are Lie. Geom. Dedic.5, 171-174 (1976). · Zbl 0343.57025
[9] R. Löwen, Homogeneous compact protective planes. J. Reine Angew. Math.321, 217-220 (1981). · Zbl 0443.51012 · doi:10.1515/crll.1981.321.217
[10] D. Montgomery, Simply connected homogeneous spaces. Proc. Amer. Math. Soc.1, 467-469 (1950). · Zbl 0041.36309 · doi:10.1090/S0002-9939-1950-0037311-6
[11] D.Montgomeey and L.Zippin, Topological Transformation Groups. New York 1955. · Zbl 0068.01904
[12] J.Nagata, Modern Dimension Theory. New York 1965. · Zbl 0129.38304
[13] J. Poncet, Groupes de Lie compacts de transformations de l’espace euclidien et les sphères comme espaces homogènes. Comment. Math. Helv.33, 109-120 (1959). · Zbl 0084.19006 · doi:10.1007/BF02565911
[14] H. Salzmann, Kollineationsgruppen kompakter, vier-dimensionaler Ebenen. Math. Z.117, 112-124 (1970). · Zbl 0205.50104 · doi:10.1007/BF01109833
[15] H. Salzmann, Homogene kompakte projektive Ebenen. Pac. J. Math.60, 217-234 (1975). · Zbl 0323.50009
[16] H. Salzmann, Compact 8-dimensional projective planes with large collineation groups. Geom. Dedic.8, 139-161 (1979). · Zbl 0465.51003 · doi:10.1007/BF00181484
[17] H. Salzmann, Automorphismengruppen 8-dimensionaler Ternärkörper. Math. Z.166, 265-275 (1979). · Zbl 0406.51013 · doi:10.1007/BF01214146
[18] H. Salzmann, Kompakte, 8-dimensionale projektive Ebenen mit großer Kollineationsgruppe. Math. Z.176, 345-357 (1981). · Zbl 0465.51004 · doi:10.1007/BF01214611
[19] H.Salzmann, Projectivities and the topology of lines. In ?Geometry ? von Staudt’s Point of View?. Proceedings of the NATO Advanced Study Institute held at Bad Windsheim, West Germany, Juli 21-August 1, 1980 edited by P. Plaumann and K. Strambach. Dordrecht 1981.
[20] J. Szenthe, On the topological characterization of transitive Lie group actions. Acta Scient. Math. Szeged36, 323-344 (1974). · Zbl 0269.57019
[21] J.Tits, Sur certaines classes d’espaces homogènes de groupes de Lie. Acad. Roy. Belg. Cl. Sci. Mem. Coll. in-8?,29, no. 3, 268 p. (1955). · Zbl 0067.12301
[22] G. W.Whitehead, Elements of homotopy theory. Berlin-Heidelberg-New York 1978. · Zbl 0406.55001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.