×

zbMATH — the first resource for mathematics

Intersection theorems with geometric consequences. (English) Zbl 0498.05048

MSC:
05C65 Hypergraphs
05A05 Permutations, words, matrices
05C15 Coloring of graphs and hypergraphs
05C35 Extremal problems in graph theory
03E05 Other combinatorial set theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] L. Babai andP. Frankl, On set intersections,J. Comb. Th. A 28 (1980), 103–105. · Zbl 0432.05002
[2] M. Deza, P. Erdos andP. Frankl, Intersection properties of systems of finite sets,Proc. London Math. Soc. 36 (1978), 369–384. · Zbl 0407.05006
[3] M. Deza, P. Erdos andN. M. Singhi, Combinatorial problems on subsets and their intersections,Advances in Mathematics, Suppl. Studies 1 (1978), 259–265.
[4] M. Deza andI. G. Rosenberg, Cardinalités, de sommets et d’arêtes d’hypergraphes satisfaisant à certaines conditions d’intersection,Cahlers CERO. 20 (1978), 279–285.
[5] P. Erdos, Problems and results in graph theory and combinatorial analysis,Proc. Fifth British Comb. Conf. 1975 Aberdeen, Congressus Numerantium,15 – Utilitas Mathematica, Winnipeg, 1976.
[6] P. Erdos, Some remarks on the theory of graphs,Bull. Amer. Math. Soc. 53 (1947), 292–294. · Zbl 0032.19203
[7] P. Erdos, Problems and results in chromatic graph theory, in:Proof techniques in graph theory (F. Harary ed.), Academic Press, London, 1969, 27–35.
[8] P. Frankl, Extremal problems and coverings of the space,European J. Combs,1 (1980), 101–106. · Zbl 0463.05043
[9] P. Frankl, A constructive lower bound for Ramsey numbers,Ars Comb. 3 (1977), 297–302. · Zbl 0397.05036
[10] P. Frankl, Problem session,Proc. French–Canadian Joint Comb. Coll., Montreal 1978.
[11] P. Frankl, Families of finite sets with prescribed cardinalities for pairwise intersections,Acta Math. Acad. Sci. Hung., to appear. · Zbl 0475.05064
[12] P. Frankl andI. G. Rosenberg, An intersection problem for finite sets, Europ. J. Comb2 (1981). · Zbl 0461.05001
[13] H. Hadwiger, Überdeckungssätze für den Euklidischen Raum,Portugaliae Math. 4 (1944), 140–144. · Zbl 0060.40610
[14] H. Hadwiger, Überdeckung des Euklidischen Raumes durch kongruente Mengen,Portugaliae Math. 4 (1945), 238–242. · Zbl 0060.40611
[15] D. G. Larman, A note on the realization of distances within sets in euclidean space,Comment. Math. Helvet. 53 (1978), 529–535. · Zbl 0408.52005
[16] D. G. Larman andC. A. Rogers, The realization of distances within sets in euclidean space,Mathematika 19 (1972), 1–24. · Zbl 0246.05020
[17] D. E. Raiskii, The realization of all distances in a decomposition ofR n inton + 1 parts (Russian)Mat. Zametki 7 (1970), 319–323.
[18] D. K. Ray-Chaudhuri andR. M. Wilson, Ont-designs,Osaka J. Math. 12 (1975), 735–744. · Zbl 0342.05018
[19] H. J. Ryser, An extension of a theorem of de Bruijn and Erdõs on combinatorial designs,J. Algebra 10 (1968), 246–261. · Zbl 0167.28001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.