Hlaváček, Ivan; Nečas, Jindřich Optimization of the domain in elliptic unilateral boundary value problems by finite element method. (English) Zbl 0496.65057 RAIRO, Anal. Numér. 16, 351-373 (1982). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 8 Documents MSC: 65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs 74A55 Theories of friction (tribology) 74M15 Contact in solid mechanics 35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation 35J20 Variational methods for second-order elliptic equations Keywords:optimization of the domain; finite element method; minimization of a cost functional; boundary conditions of Signorini’s type; convergence; contact between elastic bodies; Poisson equation PDF BibTeX XML Cite \textit{I. Hlaváček} and \textit{J. Nečas}, RAIRO, Anal. Numér. 16, 351--373 (1982; Zbl 0496.65057) Full Text: DOI EuDML OpenURL References: [1] D. BEGIS, R. GLOWINSKI, Application de la méthode des éléments finis à l’approximation d’un problème de domaine optimal. Appl Math Optimization, Vol. 2, 1975, pp. 130-169. Zbl0323.90063 MR443372 · Zbl 0323.90063 [2] P. G. CIARLET, The Finite Element Method for Elliptic Problems. North Holland, Amsterdam, 1978. Zbl0383.65058 MR520174 · Zbl 0383.65058 [3] J. NECAS, Les méthodes directes en théorie des équations elliptiques. Acadmia, Prague, 1967. MR227584 · Zbl 1225.35003 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.