zbMATH — the first resource for mathematics

The spectral class of the quantum-mechanical harmonic oscillator. (English) Zbl 0493.34012

34A55 Inverse problems involving ordinary differential equations
34L99 Ordinary differential operators
34C10 Oscillation theory, zeros, disconjugacy and comparison theory for ordinary differential equations
Full Text: DOI
[1] Baker, H.: Abel’s Theorem and the allied theory, including the theory of the theta function. Cambridge: Cambridge Univ. Press, 1897 · JFM 28.0331.01
[2] Bateman, H.: Higher transcendental functions (2). New York: McGraw-Hill 1953 · Zbl 0051.34703
[3] Borg, G.: Acta Math.78, 1–96 (1945) · Zbl 0063.00523 · doi:10.1007/BF02421600
[4] Deift, P., Trubowitz, E.: CPAM32, 121–251 (1979)
[5] Gelfand, I. M., Levitan, B.: Izvest. Mat. Akad. Nauk15, 309–360 (1951)
[6] Kay, I., Moses, H.: J. Appl. Phys.27, 1503–1508 (1956) · Zbl 0073.22202 · doi:10.1063/1.1722296
[7] Levinson, N.: Math. Tidsskr. 25–30 (1949)
[8] McKean, H. P.: Theta functions solitons, and singular curves. Partial Differential Equations and Geometry. C. Byrnes, (ed.) New York and Basel: M. Dekker, Inc., 1979 · Zbl 0411.58023
[9] McKean, H. P., van Moerbeke, P.: Invent. Math.30, 217–274 (1975) · Zbl 0319.34024 · doi:10.1007/BF01425567
[10] McKean, H. P., Trubowitz, E.: BAMS84, 1042–1085 (1978) · Zbl 0428.34026 · doi:10.1090/S0002-9904-1978-14542-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.