×

zbMATH — the first resource for mathematics

Solution of plane anisotropic elastostatical boundary value problems by singular integral equations. (English) Zbl 0492.73010

MSC:
74E10 Anisotropy in solid mechanics
45E99 Singular integral equations
65R20 Numerical methods for integral equations
74B10 Linear elasticity with initial stresses
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Altiero, N. J., Gavazza, S. D.: On a unified boundary-integral equation method. (To appear in J. Elasticity.) · Zbl 0418.73077
[2] Ambartsumyan, S. A.: Theory of anisotropic plates. Stanford (USA): Technomic Publishing 1970.
[3] Benjumea, R., Sikarskie, D. L.: On the solution of plane orthotropic elasticity problems by an integral method. J. Appl. Mech.39, 801-808 (1972). · Zbl 0261.73019
[4] Borgwardt, F.: Berechnung von krummlinig berandeten Scheiben mit Hilfe eines Integralgleichungsverfahrens. Thesis, TH Braunschweig, 1965.
[5] Brebbia, C. A. (ed.): Recent advances in boundary element methods. London-Plymouth: Pentech Press 1978. · Zbl 0384.00014
[6] Cruse, T. A., Rizzo, F. J. (eds.): Boundary-integral equation method: computational applications in applied mechanics. ASME, AMD11 (1975).
[7] Green, A. E., Taylor, G. I.: Stress systems in aeolotropic plates I; III. Proc. Roy. Soc.173, 162-172 (1939);184, 181-195 (1945). · JFM 65.0945.01
[8] Green, A. E.: Stress systems in aeolotropic plates II; IV; V; VI?VII. Proc. Roy. Soc.173, 173-192 (1939);180, 173-208 (1941);184, 231-252 (1945);184, 289-345 (1945). · JFM 65.0945.02
[9] Grüters, H.: Berechnung des Spannungszustandes in homogenen anisotropen Scheiben mit Hilfe einer Integralgleichungsmethode. Thesis, TH Aachen, 1971.
[10] Hearmon, R. F. S.: An introduction to applied anisotropic elasticity. Oxford: University Press 1961.
[11] Heise, U.: Eine Integralgleichungsmethode zur Lösung des Scheibenproblems mit gemischten Randbedingungen. Thesis, TH Aachen, 1969.
[12] Heise, U.: Application of the singularity method for the formulation of plane elastostatical boundary value problems as integral equations. Acta Mechanica31, 33-69 (1978). · Zbl 0394.73021
[13] Heise, U.: Systematic compilation of integral equations of the Rizzo type and of Kupradze’s functional equations for boundary value problems of plane elastostatics. J. Elasticity10, 23-56 (1980). · Zbl 0434.73076
[14] Jones, R. M.: Mechanics of composite materials. New York: McGraw-Hill 1975.
[15] Krenk, S.: Force and dislocation solutions in plane anisotropic elasticity. Roskilde (Denmark): Report M1827 of the Risø National Laboratory 1975.
[16] Kupradze, V. D.: Potential methods in the theory of elasticity. London: Oldbourne Press 1965. · Zbl 0188.56901
[17] Lekhnitskii, S. G.: Theory of elasticity of an anisotropic elastic body. San Francisco: Holden-Day 1963.
[18] Massonet, Ch.: Numerical use of integral procedures. In: Stress analysis (Zienkiewicz, O. C., Holister, G. S., eds.). London-New York-Sydney: John Wiley 1965.
[19] Muskhelishvili, N. J.: Some basic problems of the mathematical theory of elasticity. Groningen: Noordhoff 1963. · Zbl 0124.17404
[20] Oliveira, E. R.: Plane stress analysis by a general integral method. J. Engineering Mechanics Division ASCE 94 EM 1, 79-101 (1968).
[21] Rieder, G.: Iterationsverfahren und Operatorgleichungen in der Elastizitätstheorie. Abh. Braunschweig. Wiss. Ges.14, 109-343 (1962). · Zbl 0156.45003
[22] Rieder, G.: Mechanische Deutung und Klassifizierung einiger Integralverfahren der ebenen Elastizitätstheorie I?II. Bull. Acad. Pol. Sci., Sér. Sci. Techn.16, 101-114 (1968). · Zbl 0172.50201
[23] Rieder, G., Heise, U., Pahnke, U., Antes, H., Glahn, H., Kompis, V.: Berechnung von elastischen Spannungen in beliebig krummlinig berandeten Scheiben und Platten (Forschungsbericht des Landes Nordrhein-Westfalen 2552). Opladen: Westdeutscher Verlag 1976.
[24] Rizzo, F. J., Shippy, D. J.: A method for stress determination in plane anisotropic elastic bodies. J. Composite Materials4, 36-61 (1970). · Zbl 0237.65074
[25] Sendeckyj, G. P. (ed.): Mechanics of composite materials. In: Composite materials, Vol. 2 (Broutman, L. J., Krock, R. H., eds.). New York: Academic Press 1974.
[26] Steeds, J. W.: Introduction to anisotropic elasticity theory of dislocations. Oxford: Clarendon Press 1973. · Zbl 0284.73071
[27] Stüwe, H. P. (ed.): Mechanische Anisotropie. Wien-New York: Springer 1974. · Zbl 0288.73001
[28] Zastrow, U.: Berechnung von anisotropen Scheiben mit gemischten Randbedingungen durch singuläre Integralgleichungen. Thesis, TH Aachen, 1979. · Zbl 0415.73018
[29] Zastrow, U.: Zur Berechnung anisotroper Scheiben durch singuläre Integralgleichungen. ZAMM58, T132-T133 (1978). · Zbl 0397.73007
[30] Zastrow, U.: Anisotrope Scheiben mit gemischten Randbedingungen. ZAMM59, T218-T219 (1979). · Zbl 0415.73018
[31] Zastrow, U.: Die Airysche Spannungsfunktion für die unendliche anisotrope, orthotrope und isotrope Scheibe. ZAMM60, T159-T160 (1980). · Zbl 0441.73010
[32] Zastrow, U.: Die Einflußfunktion der Einzelkraft und der Stufenversetzung in der anisotropen Vollebene. Ingenieur-Archiv51, 89-99 (1981). · Zbl 0488.73013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.