×

zbMATH — the first resource for mathematics

Boundary-fitted coordinate systems for numerical solution of partial differential equations. A review. (English) Zbl 0492.65011

MSC:
65D15 Algorithms for approximation of functions
65Z05 Applications to the sciences
65N99 Numerical methods for partial differential equations, boundary value problems
65-02 Research exposition (monographs, survey articles) pertaining to numerical analysis
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aglow, C.M.; Schechter, S., Generation of boundary and boundary layer Fitting grids, Wngg-nasa, 121, (1980)
[2] Adamczyk, J., An electrostatic analog for generating cascade grids, Wngg-nasa, 129, (1980)
[3] Agarwal, R.K.; Bower, W.W., Navier-Stokes computations of compressible 2-D impinging jet flowfields using a two-equation turbulence model, () · Zbl 0501.76047
[4] Allen, C.N.De G., Q. J. mech. appl. math., 15, 35, (1962)
[5] Amsden, A.A.; Hirt, C.W., J. comput. phys., 11, 348, (1973)
[6] Anderson, L.; Preiser, S.; Rubin, E., J. comput. phys., 2, 279, (1968)
[7] Anderson, O.L., Comput. fluids, 8, 391, (1980)
[8] Anderson, O.L., User’s manual for a finite-difference calculation of turbulent swirling compressible flow in axisymmetric ducts with struts and slot cooled walls, ()
[9] Anderson, P.G.; Spradley, L.W., Finite difference grid generation by multivariate blending function interpolation, Wngg-nasa, 143, (1980)
[10] Atta, E.H., Component-adaptive grid embedding, Wngg-nasa, 157, (1980)
[11] Atta, E., Component-adaptive grid interfacing, ()
[12] Baker, A.J.; Manhardt, P.D., Grid and metric generation on the assembly of local biquadratic coordinate transformations, Wngg-nasa, 175, (1980)
[13] Baker, J.T.; Forsey, C.R., A fast algorithm for the calculation of transonic flow over wing/body combinations, (), 189 · Zbl 0513.76052
[14] Balasubramian, R.; Orszag, S.A., Numerical simulation of flow over wavy walls, ()
[15] Barfield, W.D., J. comput. phys., 6, 417, (1970)
[16] Barfield, W.D., J. comput. phys., 5, 23, (1970)
[17] Baker, F.; Korn, D.; Garabedian, P.; Jameson, A., Supercritical wing sections 11, (), 221
[18] Bearden, J.H., A high Reynolds number numerical solution of the Navier-Stokes equations in stream function-vorticity form, ()
[19] Belinskii, P.P.; Godunov, S.K.; Ivanov, Y.B.; Yanenko, I.K., USSR comput. math. math. phys., 15, 133, (1975)
[20] Birignen, S.; McMillan, O.J., A numerical simulation of two-dimensional inlet flow fields, ()
[21] Brackbill, J.U.; Saltzman, J.S., Adaptive zoning for singular problems in two dimensions, () · Zbl 0489.76007
[22] Brackbill, J.U.; Saltzman, J., An adaptive computation mesh for the solution of singular perturbation problems, Wngg-nasa, 193, (1980)
[23] Brandt, A., Math. comp., 31, 333, (1977)
[24] Briley, W.R.; Mcdonald, H., Analysis and computation of viscous subsonic primary and secondary flows, () · Zbl 0589.76043
[25] Brown, T.D.; Hung, T.-K., J. fluid mech., 83, 249, (1977)
[26] Camarero, R.; Reggio, M., (), 51
[27] Camarero, R.; Younis, M., Aiaa j., 18, 487, (1980)
[28] Carter, J.E., A new boundary-layer inviscid iteration technique for separated flow, ()
[29] Carter, J.E.; Edwards, D.E.; Werle, M.J., A new coordinate transformation for turbulent boundary layer flows, Wngg-nasa, 197, (1980)
[30] Caspar, J.R.; Verdon, J.M., Aiaa j., 19, 1531, (1981)
[31] Caughey, D.A., Int. J. numer. methods eng., 12, 1651, (1978)
[32] Caughey, D.A.; Jameson, A., Accelerated iterative calculation of transonic nacelle flowfields, () · Zbl 0379.76056
[33] Chakravarthy, S.R., Inviscid analysis of dual-throat nozzle flows, ()
[34] Chakravarthy, S.; Anderson, D., Math. comp., 33, 953, (1979)
[35] Chang, I.S., Three-dimensional two-phase supersonic nozzle flows, () · Zbl 0517.76067
[36] Chang, I.-S., Aiaa j., 18, 12, (1980)
[37] Chaussee, D.S.; Patterson, J.L.; Kutler, P.; Pulliam, T.L.; Steger, J.L., A numerical simulation of hypersonic viscous flows over arbitrary geometries at high angle of attack, ()
[38] Chen, L.-T., Higher-accuracy finite-difference schemes for transonic airfoil flowfield calculations, ()
[39] Chen, L.-T.; Caughey, D.A., A higher-order, finite-difference scheme for transonic flowfields around complex 3-D geometries, ()
[40] Chen, L.-T.; Caughey, D., Calculation of transonic inlet flowfields using generalized coordinates, ()
[41] Chen, L.-T.; Caughey, D.A., J. fluids eng., 102, 309, (1980)
[42] Chipman, R.; Jameson, A., An alternating-direction-implicit algorithm for unsteady potential flow, () · Zbl 0486.76021
[43] Chu, W.-H., J. appl. mech., 39, 47, (1972)
[44] Chu, W.-H., J. comput. phys., 8, 392, (1971)
[45] Chu, W.-H., J. appl. mech., 37, 828, (1970)
[46] Chyu, W.J.; Schiff, L.B., Nonlinear aerodynamic modeling of flap oscillations in transonic flow—a numerical validation, () · Zbl 0507.73042
[47] Chyu, W.J.; Davis, S.S.; Chang, K.S., Aiaa j., 19, 684, (1981)
[48] Clark, T.L., J. comput. phys., 24, 186, (1977)
[49] Cline, M.C.; Wilmoth, R.G., Computation of high Reynolds number internal/external flows, () · Zbl 0508.76051
[50] Coleman, R.M., Boundary-fitted coordinate systems for three-dimensional regions containing ship-like bodies, ()
[51] Coleman, R.M., Generation of orthogonal boundary-fitted coordinate systems, Wnggnasa, 213, (1980)
[52] Coleman, R.M., NUMESH: A computer program to generate finite difference meshes for arbitrary doubly-connected two-dimensional regions, ()
[53] Cooke, C.H., Comput. fluids, 9, 63, (1981)
[54] Cooper, G.K., An approximate factorization solution of the Navier-Stokes equations for transonic flow using body-fitted coordinates with application to NACA 64A010 airfoils, ()
[55] Cooper, G.K.; Thompson, J.F., A pansonic Navier-Stokes solver, ()
[56] Cosner, R.R., Fast Navier-Stokes solution of transonic flowfield about axisymmetric afterbodies, ()
[57] Courant, R.; Hilbert, D., ()
[58] Crowder, H.J.; Dalton, C., J. comput. phys., 7, 32, (1971)
[59] Crowley, W.P., An equipotential zoner on a quadrilateral mesh, (July 5, 1962), Lawrence Livermore National Laboratory, memorandum
[60] Daly, B.J., A numerical study of pulsatile flow through constricted arteries, Lecture notes in physics, Vol. 35, 117, (1975) · Zbl 0325.76149
[61] Davies, C.W., J. comput. phys., 39, 164, (1981)
[62] Davis, R.T., Numerical methods for coordinate generation based on Schwarz-Christoffel transformations, ()
[63] Daywitt, J.; Kutler, P.; Anderson, D., Aiaa j., 16, 385, (1978)
[64] Deiwert, G.S., Aiaa j., 19, 582, (1981)
[65] Deiwert, G.S., Recent computation of viscous effects in transonic flow, Lecture notes in physics, Vol. 59, 159, (1976) · Zbl 0363.76038
[66] Dickson, L.J., Grid generation using course, smooth finite elements, Wngg-nasa, 231, (1980)
[67] Dow, R.S., Numerical solution of the biharmonic plate equation for arbitrarily shaped plates utilizing automatically-generated boundary-fitted curvilinear coordinate systems, ()
[68] Drummond, J.P.; Weidner, E.H., Numerical study of a scramjet engine flow field, () · Zbl 0496.76033
[69] Dulikravich, D.S., Fast generation of body conforming grids for 3-D axial turbomachinery flow calculations, Wngg-nasa, 241, (1980)
[70] Dulikravich, D.S.; Sobieczky, H., Shockless design and analysis of transonic blade shapes, () · Zbl 0494.76064
[71] Dwyer, H.A., ()
[72] Dwyer, H.A.; Kee, R.J.; Sanders, B.R., Aiaa j., 18, 1205, (1980)
[73] Dwyer, H.A.; Raiszadah, F.; Otey, G., A study of reactive diffusion problems with stiff integrators and adaptive grids, Lecture notes in physics, Vol. 141, 170, (1981)
[74] Eiseman, P.R., Lecture notes in physics, No. 141, 176, (1980)
[75] Eiseman, P.R., J. comput. phys., 26, 307, (1978)
[76] Eiseman, P.R., Geometric methods in computational fluid dynamics, (1980), NASA Langley Research Center, ICASE 80-11
[77] Eiseman, P.R., J. comput. phys., 33, 118, (1979)
[78] Eiseman, P.R., Three-dimensional coordinates about wings, ()
[79] Eiseman, P.R., A unification of unidirectional flow approximations, Lecture notes in physics, Vol. 90, 185, (1978)
[80] Eiseman, P.R.; Smith, R.E., Grid generation using algebraic techniques, Wngg-nasa, 73, (1980)
[81] Eiseman, P.R.; Stone, A.P., SIAM rev., 22, 12, (1980)
[82] Ellacott, S.W., Numer. math., 33, 437, (1979)
[83] Eriksson, E., Three-dimensional spline-generated coordinate transformations for grids around wing-body configurations, Wngg-nasa, 253, (1980)
[84] Forester, C.K., Body-fitted 3-D full-potential flow analysis of complex ducts and inlets, ()
[85] Fornberg, B., SIAM J. sci. stat. comput., 1, 386, (1980)
[86] Forsey, C.R.; Edwards, M.G.; Carr, M.P., An investigation of grid patching techniques, Wngg-nasa, 265, (1980)
[87] Frey, A.E.; Hall, C.A.; Porsching, T.A., Math. comput., 32, 725, (1978)
[88] Gaier, D., Konstruktive methoden der konformen abbildungen, (1964), Springer-Verlag Berlin · Zbl 0132.36702
[89] Gaier, D., Numer, math., 19, (1972)
[90] Gal-chen, T.; Somerville, R.C.J., J. comput. phys., 17, 276, (1975)
[91] Gal-chen, T.; Somerville, R.C.J., J. comput. phys., 17, 209, (1975)
[92] Garrick, I.E., Potential flow about arbitrary biplane wing sections, Naca tr, 542, (1936) · JFM 62.1573.05
[93] Gerhard, M.A., OASIS: A general purpose mesh generator for finite element codes, (1979), Lawrence Livermore Lab., Univ. of California, M-101
[94] Ghia, K.N.; Ghia, U., Numerical generation of a system of curvilinear coordinates for turbine cascade flow analysis, () · Zbl 0583.76029
[95] Ghia, K.N.; Ghia, U.; Studerus, C.J., (), New Orleans, La.
[96] Ghia, U.; Ghia, K.N., Boundary-fitted coordinates for regions with highly-curved boundaries and reentrant boundaries, Wngg-nasa, 295, (1980)
[97] Ghia, U.; Ghia, K.N.; Rubin, S.G.; Khosla, P.K., Comput. fluids, 9, 123, (1981)
[98] Ghia, U.; Ghia, K.N.; Studerus, C.J., Comput. fluids, 5, 205, (1977)
[99] Ghia, U.; Ghia, K.N.; Studerus, C.J., Use of surface-oriented coordinates in the numerical simulation of flow in a turbine cascade, Lecture notes in physics, Vol. 59, 197, (1976) · Zbl 0364.76017
[100] Ghia, U.; Hodge, J.K.; Hankey, W.L., An optimization study for generating surfaceoriented coordinates for arbitrary bodies in high-re flow, ()
[101] Ghosh, A.; Mastin, C.W.; Thompson, J.F., Computers in flow predictions and fluid dynamic experiments, (1981), ASME Washington, D.C
[102] Libeling, H.J.; Shamroth, S.J.; Eiseman, P.R., Analysis of strong-interaction dynamic stall of helicopter rotor blades, (1977), United Tech. Research Center East Hartford, Conn, R77-912030-17
[103] Girault, V., SIAM J. numer. anal., 11, 260, (1974)
[104] Gnoffo, P.A., Aiaa j., 18, 611, (1980)
[105] Gnoffo, P.A., Forebody and afterbody solutions of the Navier-Stokes equations for supersonic flow over blunt bodies in a generalized orthogonal coordinate system, ()
[106] Gnoffo, P.A., A generalized orthogonal coordinate system for describing families of axisymmetric and two-dimensional bodies, () · Zbl 0784.76065
[107] Godunov, S.K.; Prokopov, G.P., USSR comput. math. math. phys., 7, 89, (1967)
[108] Godunov, S.K.; Prokopov, G.P., USSR comput. math. math. phys., 12, 182, (1972)
[109] Gordon, W.J.W.J.; Hall, C.A., Int. J. numer. meth. eng., 7, 461, (1973)
[110] Lough, D.O.; Spiegel, E.A.; Toomre, J., Highly stretched meshes as functionals of solutions, Lecture notes in physics, Vol. 35, 191, (1975)
[111] Graham, J.E.; Hankey, W.L.; Shang, J.S., Navier-Stokes solution of a slender body of revolution at large incidence, () · Zbl 0489.76074
[112] Graves, R.A., Application of a numerical orthogonal coordinate generator to axisymmetric blunt bodies, (1979), Langley Research Center, NASA TM 80131
[113] Graves, R.A., A simple numerical orthogonal coordinate generator for fluid dynamic applications, Wngg-nasa, 307, (1980)
[114] Graves, R.A.; Hamilton, H.H., Aiaa j., 19, 2, (1981)
[115] Green, L.L., Conservative full-potential calculations for axisymmetric, transonic flow, () · Zbl 0528.76066
[116] Grossman, B.; Melnik, R.E., The numerical computation of the transonic flow over two-element airfoil systems, Lecture notes in physics, Vol. 59, 220, (1976) · Zbl 0382.76050
[117] Grousch, C.E.; Orszag, S.A., J. comput. phys., 25, 273, (1977)
[118] Hall, D.W., A three-dimensional body-fitted coordinate system for flow field calculations on asymmetric nose tips, Wngg-nasa, 315, (1980)
[119] Halsey, N.D., Conformal-mapping analysis of multielement airfoils with boundary-layer corrections, () · Zbl 0417.76012
[120] Halsey, N.D., Aiaa j., 17, 1281, (1979)
[121] Harlow, F.H., J. comput. phys., 8, 214, (1971)
[122] Harrington, A.N., Conformal mappings of multiply-connected regions onto regions with specified boundary shapes, Wngg-nasa, 329, (1980)
[123] Haussling, H.J., J. comput. phys., 30, 107, (1979)
[124] Haussling, H.J.; Coleman, R.M., J. fluid mech., 92, 767, (1979)
[125] Hayes, J.K.; Kahaner, D.K.; Kellner, R.G., Math. comput., 26, 327, (1972)
[126] Hayes, J.K.; Kahaner, D.K.; Kellner, R.G., Math. comput., 29, 512, (1975)
[127] Hegna, H.A., The numerical solution of incompressible turbulent flow over airfoils, ()
[128] Heinz, E., J. anal. math., 5, 197, (1957)
[129] Helliwell, W.S.; Dickinson, R.P.; Lubard, S.C., Aiaa j., 19, 191, (1981)
[130] Hindman, R.G.; Kutler, P.; Anderson, D., Aiaa j., 19, 424, (1981)
[131] Hindman, R.G., Geometrically induced errors and their relationship to the form of the governing equations and the treatment of generalized mappings, (), 113
[132] Hodge, J.K.; Stone, A.L.; Miller, T.E., Aiaa j., 17, 458, (1979)
[133] Holst, T.L., A fast, conservative algorithm for solving the transonic full-potential equation, () · Zbl 0457.76046
[134] Holst, T.L., Aiaa j., 17, 1038, (1979)
[135] Holst, T.L.; Brown, D., Transonic airfoil calculations using solution-adaptive grids, (), 136 · Zbl 0516.76049
[136] Hornby, R.P.; Barrow, H., Int. J. heat fluid flow, 1, 13, (1979)
[137] Horstman, C.C.; Settles, G.S.; Bogdonoff, S.M.; Williams, D.R., A reattaching free shear layer in compressible turbulent flow-A comparison of numerical and experimental results, ()
[138] Hsieh, T., Calculation of viscous, sonic flow over hemisphere-cylinder at 19 degree incidence: the capturing of nose vortices, ()
[139] Hsieh, T., Numerical investigation of flowfield about a series of indented nosetips, ()
[140] Hung, T.-K.; Brown, T.D., J. comput. phys., 23, 343, (1977)
[141] Hurley, F.X.; Linback, R.K., Int. J. numer. meth. eng., 5, 585, (1973)
[142] Ives, D.C., A modern look at conformal mapping, including doubly connected regions, () · Zbl 0346.76049
[143] Ives, D.C.; Liutermoza, J.F., Aiaa j., 15, 647, (1977)
[144] Ives, D.C.; Liutermoza, J.F., Second order accurate calculation of transonic flow over turbomachinery cascades, ()
[145] Ives, D.C.; Menor, W.A., A grid generation for inlet and inlet-centerbody configurations using conformal mapping and stretching, (), 33
[146] Jameson, A., Comm. pure appl. math., 27, 283, (1974)
[147] Jameson, A.; Caughey, D.A., A finite volume method for transonic potential flow calculations, () · Zbl 0522.76061
[148] Johnson, B.H., VAHM-A vertically averaged hydrodynamic model using boundary-fitted coordinates, ()
[149] Johnson, B.H.; Thompson, J.F., A discussion of boundary-fitted coordinate systems and their applicability to the numerical modeling of hydraulic problems, ()
[150] Johnson, B.H.; Thompson, J.F., ()
[151] Kee, R.J.; Miller, J.A., Aiaa j., 16, 169, (1978)
[152] Kim, M.D.; Thareja, R.R.; Lewis, C.H., Three-dimensional viscous flowfield computations in a streamline coordinate system, () · Zbl 0481.76068
[153] King, L.S.; Johnson, D.A., Calculations of transonic flow about an airfoil in a wind tunnel, ()
[154] Klevenhusen, K.D., A calculation method for multielement airfoils in subsonic and transonic potential flow, ()
[155] Klopfer, G.H.; McRae, D.S., The nonlinear modified equation approach to analyzing finite difference schemes, (), 317
[156] Knight, D.D., Aiaa j., 15, 1583, (1977)
[157] Knight, D.D., Aiaa j., 19, 1, (1981)
[158] Kober, H., Dictionary of conformal representations, (1952), Dover New York · Zbl 0049.33508
[159] Kovenya, V.M.; Yanenko, N.N., USSR comput. math. math. phys., 19, 178, (1980)
[160] Kowalski, E.J., Boundary-fitted coordinate systems for arbitrary computational regions, Wngg-nasa, 331, (1980)
[161] Kowalski, E.J.; Peery, K.M.; Klees, G.W., Numerical simulation for the design of a supersonic cruise nozzle with fluid noise shield, ()
[162] Kumar, A., Numerical analysis of the scramjet inlet flow field using two-dimensional Navier-Stokes equations, ()
[163] Kumar, D.; Hester, L.R.; Thompson, J.F., Nonsteady fluid dynamics, (), 53
[164] Kutler, P.; Chakravarthy, P.; Lombard, C.P., Supersonic flow over ablated nosetips using an unsteady implicit numerical procedure, ()
[165] Kwon, J.H., Numerical solution of the compressible Navier-Stokes equations using density gradients as additional dependent variables, ()
[166] Lau, P.C.M., J. comput. phys., 32, 325, (1979)
[167] Laura, P.A.A., Aiaa j., 19, 830, (1981)
[168] Lee, J.S.; Fung, Y.C., Microvasc. res., 3, 272, (1971)
[169] Lee, K.D., Computers in flow predictions and fluid dynamic experiments, (1981), ASME Washington, D.C
[170] Lee, K.D., 3-D transonic flow computations using grid systems with block structure, ()
[171] Lee, K.D.; Huang, M.; Yu, N.J.; Rubbert, P.E., Grid generation for general threedimensional configurations, Wngg-nasa, 355, (1980)
[172] Lee, K.D.; Rubbert, P.E., Lecture notes in physics, Vol. 141, 266, (1980)
[173] Levy, R.; McDonald, H.; Bailey, W.R.; Kreskovsky, J.P., A three-dimensional turbulent compressible subsonic duct flow analysis for use with constructed coordinate systems, ()
[174] Lewy, H., Bull. amer. math. soc., 42, 689, (1936)
[175] Liszka, T.; Orkisz, J., Comput. struct., 11, 83, (1980)
[176] Lombard, C.K.; Davy, W.C.; Green, M.J., Forebody and base region red-gas flow in severe planetary entry by a factored implicit numerical method—part I (computational fluid dynamics), ()
[177] Lombard, C.K.; Lombard, M.P.; Menees, G.P.; Yang, J.Y., Some aspects of adapting computational meshes to complex flow domains and structures with applications to blown shock layer and base flow, Wngg-nasa, 377, (1980)
[178] Long, W.S., Two-body coordinate system generation using body-fitted coordinate system and complex variable transformation, ()
[179] Lugt, H.J., AGARD lecture series no. 86, (1977)
[180] MacCormack, R.W.; Paullay, A.J., Comput. fluids, 2, 339, (1974)
[181] Maria-Sube, R., J. comput. phys., 16, 127, (1974)
[182] Mastin, C.W.; Ghosh, A.; Thompson, J.F., A fractional step method for the solution of the Navier-Stokes equations in arbitrary three-dimensional regions, (), 114
[183] Mastin, C.W.; Thompson, J.F., ()
[184] Mastin, C.W.; Thompson, J.F., J. appl. math. phys. (ZAMP), 29, (1978)
[185] Mastin, C.W.; Thompson, J.F., J. math. anal. appl., 62, 52, (1978)
[186] Mastin, C.W.; Thompson, J.F., Errors in finite-difference computations on curvilinear coordinate systems, ()
[187] Mastin, C.W.; Thompson, J.F., Three-dimensional body-fitted coordinate systems for numerical solution of the Navier-Stokes equations, ()
[188] Mastin, C.W.; Thompson, J.F., Numer. math., 29, 397, (1978)
[189] Mastin, C.W.; Thompson, J.F.; Ghosh, A.; Fu, T.H., Three-dimensional laminar solution of the Navier-Stokes equations using body-fitted coordinate systems, ()
[190] McCartin, B.J., Applications of exponential splines in computational fluid dynamics, (), 16 · Zbl 0521.76005
[191] McCrory, R.L.; Orszag, S.A., Spectral methods for multi-dimensional diffusion problems, (), 417
[192] McDonald, H.; Bailey, W.R., Computational fluid dynamic aspects of internal flows, ()
[193] McNally, W.D., FORTRAN program for generating a two-dimensional orthogonal mesh between two arbitrary boundaries, ()
[194] McVittie, G.C., (), 285
[195] McWhorter, J.C.; Sadd, M.H., J. heat transfer, 102, 308, (1980)
[196] Mehta, U.B.; Lavan, Z., J. fluid mech., 67, 227, (1975)
[197] Menikoff, R.; Zemach, C., J. comput. phys., 36, 366, (1980)
[198] Meyder, R., J. comput. phys., 17, 53, (1975)
[199] Middlecoff, J.F.; Thomas, P.D., Direct control of the grid point distribution in meshes generated by elliptic equations, ()
[200] Mikhail, A.G.; Hankey, W.L.; Shang, J.S., Aiaa j., 18, 869, (1980)
[201] Mizumoto, H.; Watanabe, M.; Ito, T., J. phys. soc. Japan, 37, 1452, (1974)
[202] Mobley, C.D.; Stewart, R.J.; Mobley, C.D.; Stewart, R.J., Erratum, J. comput. phys., J. comput. phys., 39, 249, (1981) · Zbl 0472.65012
[203] Moretti, G., (), 13
[204] Moretti, G., Grid generation using classical techniques, Wngg-nasa, 1, (1980)
[205] Moretti, G.; Salas, M.D., The blunt body problem for a viscous rarefied gas flow, Aiaa 69-139, (1969)
[206] Napolitano, M.; Werle, M.J.; Davis, R.T., Comput. fluids, 7, 165, (1979)
[207] Ni, R.-H., A multiple grid scheme for solving the Euler equations, (), 257
[208] Nietubicz, C.J., Navier-Stokes computations for conventional and hollow projectile shapes at transonic velocities, ()
[209] Oberkampf, W.L., Int. J. numer. meth. eng., 10, 211, (1976)
[210] O’Carroll, M.J., Int. J. numer. meth. eng., 10, 225, (1976)
[211] Oh, Y.H., An analytical transformation technique for generating uniformly spaced computational mesh, ()
[212] Ohring, S., Application of the multigrid method to grid generation, (), 399
[213] Offer, G., Numer. math., 35, 189, (1980)
[214] Paskonov, V.M., USSR comput. math. math. phys., 11, 302, (1971)
[215] Peery, K.M.; Forester, C.K., Aiaa j., 18, 1088, (1980)
[216] Pierson, B.L.; Kutler, P., Optimal nodal point distribution for improved accuracy in comp. fluid dynamics, ()
[217] Piva, R.; DiCarlo, A.; Guj, G., Comput. fluids, 8, 225, (1980)
[218] Pope, S.B., J. comput. phys., 26, 197, (1978)
[219] Potter, D.E.; Tuttle, G.H., J. comput. phys., 13, 483, (1973)
[220] Pulliam, T.H.; Steger, J.L., Aiaa j., 18, 159, (1980)
[221] Rabinowitz, P., J. assoc. comput. Mach., 13, 296, (1966)
[222] Rai, M.M.; Anderson, D.A., Application of adaptive grids to fluid flow problems with asymptotic solutions, () · Zbl 0479.76014
[223] Rai, M.M.; Anderson, D.A., Grid evolution in time asymptotic problems, () · Zbl 0479.76014
[224] Rai, M.M.; Anderson, D.A., The use of adaptive grids in conjunction with shock capturing methods, (), 156
[225] Rakich, J.V.; Vigneron, Y.C.; Tannehill, J.C., Navier-Stokes calculations for laminar and turbulent hypersonic flow over indented nosetips, ()
[226] Reddy, R.N.; Thompson, J.F., Numerical solution of incompressible Navier-Stokes equations in the integro-differential formulation using boundary-fitted coordinate systems, ()
[227] de Rivas, E.K., J. comput. phys., 10, 202, (1972)
[228] Rizk, Y.M.; Chaussee, D.S.; McRae, D.S., Computation of hypersonic viscous flow around three-dimensional bodies at high angles of attack, ()
[229] Rizzi, A.; Bailey, H., Finite-volume solution of the Euler equations for steady three-dimensional transonic flow, Lecture notes in physics, Vol. 59, 347, (1976)
[230] Rizzi, A.; Eriksson, L.E., Transfinite mesh generation and damped Euler equation algorithm for transonic flow around wing-body configurations, (), 43
[231] Roach, R.L.; Sankar, N.L., The strongly implicit procedure applied to the flow field of transonic turbine cascades, ()
[232] Roberts, A., The spline-Euler system, manifold mapping of multiple airfoils a proposed treatment of the interface problems, ()
[233] Roberts, D.W.; Forester, C.K., Aiaa j., 17, 33, (1979)
[234] Roberts, G.O., Computational meshes for boundary layer problems, Lecture notes in physics, Vol. 8, 171, (1970)
[235] Robertson, J.M.; Clark, M.E.; Cheng, L.C., (), 217
[236] Sankar, N.L.; Malone, J.; Tassa, Y., A strongly implicit procedure for steady three-dimensional transonic potential flows, () · Zbl 0483.76076
[237] Sankar, N.L.; Malone, J.B.; Tassa, Y., An implicit conservative algorithm for steady and unsteady three-dimensional transonic potential flows, (), 199 · Zbl 0483.76076
[238] Schiff, L.B., A numerical solution of the axisymmetric jet counterflow problem, Lecture notes in physics, Vol. 59, 391, (1976)
[239] Sha, W.T.; Chen, B.C.-J.; Cha, J.W.; Vanka, S.P.; Schmitt, R.C.; Thompson, J.F.; Doria, M.L., Benchmark rod-bundle thermal-hydraulic analysis using boundary fitted coordinates, ()
[240] Shamroth, S.J.; Gibeling, H.J., The prediction of the turbulent flow field about an isolated airfoil, () · Zbl 0454.76011
[241] Shamroth, S.; Gibeling, H.J.; McDonald, H., A Navier-Stokes solution for laminar and turbulent flow through a cascade of airfoils, () · Zbl 0454.76011
[242] Shang, J.S., Numerical simulation of wing-fuselage interference, () · Zbl 0499.76036
[243] Shang, J.S.; Hankey, W.L.; Smith, R.E., Flow oscillations of spike-tipped bodies, ()
[244] Shanks, S.P.; Thompson, J.F., (), 202
[245] Skulsky, R.S., J. spacecr. rockets, 3, 247, (1966)
[246] Smith, R.E., Numerical solution of the Navier-Stokes equations for a family of three-dimensional corner geometries, ()
[247] Smith, R.E., Two-boundary grid generation for the solution of the three-dimensional compressible Navier-Stokes equations, ()
[248] Smith, R.E.; Weigel, B.L., Analytic and approximate boundary fitted coordinate systems for fluid flow simulation, ()
[249] Sockol, P.M., Generation of C-type cascade grids for viscous flow computation, Wngg-nasa, 437, (1980)
[250] Sorenson, R.L., A computer program to generate two-dimensional grids about airfoils and other shapes by the use of Poisson’s equation, Nasa tm-81198, (1980)
[251] Sorenson, R.L.; Steger, J.L., Numerical generation of two-dimensional grids by the use of Poisson equations with grid control at boundaries, Wngg-nasa, 449, (1980)
[252] Sorenson, R.L.; Steger, J.L., Simplified clustering of nonorthogonal grids generated by elliptic partial differential equations, ()
[253] Spradley, L.W.; Staknaker, J.F.; Ratliff, A.W., Aiaa j., 19, 1302, (1981)
[254] Squire, W., J. franklin inst., 299, 315, (1975)
[255] Sridhar, K.P.; Davis, R.T., (), 35
[256] Srinivasan, G.R.; Chyu, W.J.; Steger, J.L., Computation of simple three-dimensional wing-vortex interaction in transonic flow, ()
[257] Starius, G., Numer. math., 28, 242, (1977)
[258] Starius, G., Numer. math., 28, 25, (1977)
[259] Steger, J.L., A curvilinear grid generation program for projectile configurations, FSI report 79-02, (1979), Sunnyvale, Calif.
[260] Steger, J.L., Aiaa j., 16, 679, (1978)
[261] Steger, J.L.; Bailey, H.E., Aiaa j., 18, 249, (1980)
[262] Steger, J.L.; Chaussee, D.S., Generation of body fitted coordinates using hyperbolic partial differential equations, Flow simulations inc. report 80-1, (1980), Sunnyvale, Calif. · Zbl 0474.65015
[263] Steger, J.L.; Pulliam, T.H.; Chima, R.V., An implicit finite difference code for inviscid and viscous cascade flow, ()
[264] Steger, J.L.; Sorenson, R.L., J. comput. phys., 33, 405, (1979)
[265] Steger, J.L.; Sorenson, R.L., Use of hyperbolic partial differential equations to generate body fitted coordinates, Wngg-nasa, 463, (1980)
[266] Steinhoff, J.; Jameson, A., Multiple solutions of the transonic potential flow equation, (), 347
[267] Swanson, R.C., Navier-Stokes solutions for nonaxisymmetric nozzle flows, ()
[268] Symm, G.T., Numer. math., 13, 448, (1969)
[269] Symm, G.T., Numer. math., 9, 250, (1966)
[270] Symm, G.T., Numer. math., 10, 437, (1967)
[271] Tannehill, J.C.; Holst, T.L.; Rakich, J.V., Aiaa j., 14, 204, (1976)
[272] Tannehill, J.C.; Venkatapathy, E.; Rakich, J.V., Numerical solution of supersonic viscous flow over blunt delta wings, () · Zbl 0522.76064
[273] Tatom, F.B.; Waldrop, W.R.; Smith, S.R., Curvilinear grids for sinuous river channels, (), 479
[274] Thacker, W.C., Int. J. numer. meth. eng., 15, 1335, (1980)
[275] Thacker, W.C.; Gonzalez, A.; Putland, G.E., J. comput. phys., 37, 371, (1980)
[276] Thames, F.C.; Thompson, J.F.; Mastin, C.W.; Walker, R.L., J. comput. phys., 24, 245, (1977)
[277] Theodorsen, T.; Garrick, I.E., General potential theory of arbitrary wing sections, Naca tr 452, (1933) · JFM 59.1448.02
[278] Thom, A.; Apelt, C.J., Field computations in engineering and physics, (1961), Van Nostrand Princeton, N.J · Zbl 0122.12302
[279] Thomas, P.D., Boundary conditions for implicit solutions to the compressible Navier-Stokes equations in finite computational domains, ()
[280] Thomas, P.D., Construction of composite three dimensional grids from subregion grids generated by elliptic systems, (), 24
[281] Thomas, P.D.; Lombard, C.K., Aiaa j., 17, 1030, (1980)
[282] Thomas, P.D.; Vinokur, M.; Bastianon, R.A.; Conti, R.J., Aiaa j., 10, 887, (1972)
[283] Thompson, D.S., Numerical solution of the Navier-Stokes equations for high Reynolds number incompressible turbulent flow, ()
[284] Thompson, J.; Mastin, W., Grid generation using differential systems techniques, (), 37
[285] Thompson, J.F., Numerical solution of flow problems using body-fitted coordinate systems, () · Zbl 0458.76025
[286] Thompson, J.F.; Thames, F.C.; Mastin, C.W., J. comput. phys., 15, 299, (1974)
[287] Thompson, J.F.; Thames, F.C.; Mastin, C.W., Boundary-fitted curvilinear coordinate systems for solution of partial differential equations on fields containing any number of arbitrary two-dimensional bodies, Nasa CR-2729, (1977) · Zbl 0363.76001
[288] Thompson, J.F.; Thames, F.C.; Mastin, C.W., J. comput. phys., 24, 274, (1977)
[289] Thompson, J.F.; Thames, F.C.; Mastin, C.W.; Shanks, S.P., Use of numerically generated body-fitted coordinate systems for solution of the Navier-Stokes equations, () · Zbl 0366.76021
[290] Thompson, J.F.; Thames, F.C.; Shanks, S.P.; Reddy, R.N.; Mastin, C.W., Solutions of the Navier-Stokes equations in various flow regimes on fields containing any number of arbitrary bodies using boundary-fitted coordinate systems, Lecture notes in physics, Vol. 59, 421, (1976) · Zbl 0366.76021
[291] Thompson, J.F.; Thompson, D.S., Control of coordinate line spacing for numerical simulation of flow about airfoils, (1980), Mississippi State Univ, unpublished
[292] Tolstykh, A.I.; Tolstykh, A.I., USSR comput. math. math. phys., Lecture notes in physics, Vol. 90, 507, (1979)
[293] Trefethen, L.N., SIAM J. sci. stat. comput., 1, 82, (1980)
[294] Turner, L., Numerical solution of the Navier-Stokes equations for laminar, transonic flows, ()
[295] Verdon, J.M.; Caspar, J.R., Development of a linear unsteady aerodynamic analysis for finite-deflection subsonic cascades, () · Zbl 0493.76041
[296] Vigneron, Y.C.; Rakich, J.V.; Tannehill, J.C., Calculation of supersonic viscous flow over delta wings with sharp leading edges, ()
[297] Vinokur, M., J. comput. phys., 14, 105, (1974)
[298] Vinokur, M., On one-dimensional stretching functions for finite-difference calculations, Nasa CR 3313, (1980)
[299] Visbal, M., Generation of nearly-orthogonal body-fitted coordinate systems in two-dimensional singly-connected regions, ()
[300] Viviand, H., Rech. aerospat., 1974-1, 65, (1974)
[301] Viviand, H.; Ghazzi, W., Numerical solution of the compressible Navier-Stokes equations at high Reynolds numbers with applications to the blunt body problem, Lecture notes in physics, Vol. 59, 434, (1976) · Zbl 0367.76066
[302] Walitt, L.; Liu, C.Y., Aeronautical quarterly, 15, 313, (1974)
[303] Walitt, L.; Trulio, J.G., A numerical method for computing three-dimensional viscous supersonic flow fields about slender bodies, Nasa CR-1963, (1971)
[304] Walitt, L.; Wilcox, D.C.; Liu, C.Y., Comput. fluids, 3, 235, (1975)
[305] Walkden, F., The equations of motion of a viscous compressible gas referred to an arbitrarily moving coordinate system, Royal aircraft establishment technical report 66140, (1966), England
[306] Wanstrath, J.J.; Whitaker, R.E.; Reid, R.O.; Vastano, A.C., Storm surge simulation in transformed coordinates, ()
[307] Warsi, Z.U.A., Aiaa j., 19, 240, (1981)
[308] Warsi, Z.U.A., A method for the generation of general three-dimensional coordinates between bodies of arbitrary shapes, () · Zbl 0539.65085
[309] Warsi, Z.U.A., Tensors and differential geometry applied to analytic and numerical coordinate generation, () · Zbl 0539.65084
[310] Warsi, Z.U.A.; Amlicke, B.B.; Thompson, J.F., Numerical solution of the twodimensional incompressible averaged Navier-Stokes equations for finite arbitrary shaped isolated bodies, ()
[311] Warsi, Z.U.A.; Devarayalu, K.; Thompson, J.F., Numerical solution of the Navier-Stokes equations for arbitrary blunt bodies in supersonic flows, Numer. heat transfer, 1, 499, (1978)
[312] Warsi, Z.U.A.; Thompson, J.F., Machine solutions of partial differential equations in the numerically generated coordinate systems, () · Zbl 0703.49034
[313] Warsi, Z.U.A.; Thompson, J.F.; Warsi, Z.U.A.; Thompson, J.F., A non-iterative method for the generation of twodimensional orthogonal curvilinear coordinates in an Euclidean space, (), Math. comp., 38, 501, (1982), Also · Zbl 0489.65067
[314] Warsi, Z.U.A.; Weed, R.A.; Thompson, J.F., On the solution of the unsteady Navier-Stokes equation for hypersonic flow about axially-symmetric blunt bodies, ()
[315] Wassmuth, R.H., Some complex numerical integrations of the Schwarz-Christoffel transformation and application to potential flow, ()
[316] Watford, R.W., A method for orthogonalizing meshes in plane regions, and its application to discrete fluid mechanics problem, ()
[317] Weisel, J., Numer. math., 35, 201, (1980)
[318] Wilkins, L., J. comput. phys., 36, 281, (1980)
[319] Winslow, A.M.; Winslow, A.M., ‘equipotential’ zoning of two-dimensional meshes, Ucrl-1312, J. comput. phys., 1, 149, (1966), LLNL
[320] Winslow, A.M., J. comput. phys., 2, 149, (1967)
[321] Winslow, A.M., Adaptive mesh zoning by to equipotential method, Ucid-19062, (1981)
[322] Woods, L.C., The theory of subsonic plane flow, (1961), Cambridge Univ. Press London/New York · Zbl 1219.76003
[323] Wu, J.C.; El-Refaee, M.; Tekondis, S.G., Solutions of the unsteady two-dimensional compressible Navier-Stokes equations using the integral representation method, ()
[324] Wu, J.C.; Gulcat, U., A body-fitted conformal mapping method with grid-spacing control, (), 545
[325] Wu, J.C.; Sampath, S., A numerical study of viscous flow around an airfoil, ()
[326] Yanenko, N.N.; Kovenya, V.M.; Lisenjkin, V.D.; Fomin, V.M.; Vorozhtsov, E.V., Comput. meth. appl. mech. eng., 17/18, 659, (1979)
[327] Yanenko, N.N.; Kroshko, E.A.; Liseikin, V.V.; Fomin, V.M.; Shapeev, V.P.; Shitov, Y.A., Methods for the construction of moving grids for problems of fluid dynamics with big deformations, Lecture notes in physics, Vol. 59, 454, (1976) · Zbl 0368.76069
[328] Yen, S.M.; Lee, K.D., Design criteria and generation of optimum finite element meshes, Lecture notes in physics, Vol. 90, 579, (1979)
[329] Young, C.D., Calculation of stress concentration factors in uniform and non-uniform shafts utilizing numerical coordinate transformation, ()
[330] Yu, N.J., Grid generation and transonic flow calculations for three-dimensional configurations, ()
[331] Yu, N.J., Transonic flow simulations for complex configurations with surface fitted grids, ()
[332] Gordon, W.J., SIAM J. numer. anal., 8, 158, (1971)
[333] ()
[334] Goldman, A.; Kao, Y.C., J. heat transfer, 103, 753, (1981)
[335] Pelz, R.B.; Steinhoff, J.S., Multigrid-ADI solution of the transonic full potential equation for airfoils mapped to slits, (), 27
[336] Anderson, O.L.; Hankins, G.B., Development of a parabolic finite difference method for 3-D high Reynolds number. viscous internal flows, (), 119
[337] O’Brien, V., J. comput. phys., 44, 220, (1981)
[338] Papamichael, N.; Kokkinos, C.A., Two numerical methods for the conformal mapping of simply-connected domains, Comput. meth. appl. mech. eng., 38, 285, (1981) · Zbl 0477.30009
[339] Meiron, D.I.; Orszag, S.A.; Israeli, M., J. comput. phys., 40, 345, (1981)
[340] ()
[341] Hough, D.M.; Papamichael, N., Numer. math., 37, 133, (1981)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.