×

zbMATH — the first resource for mathematics

A global code invariant under the Higman-Sims group. (English) Zbl 0492.20011

MSC:
20D08 Simple groups: sporadic groups
20B20 Multiply transitive finite groups
05C25 Graphs and abstract algebra (groups, rings, fields, etc.)
94A24 Coding theorems (Shannon theory)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Broue´, M.; Enguehard, M., La geometrie de graham higman invariante par le groups d’higman-sims, ()
[2] Conway, J.H., Three lectures on exceptional groups, (), 215-247
[3] Gorenstein, D., Finite groups, (1968), Harper & Row New York · Zbl 0185.05701
[4] Hale, M.P.; Shult, E.E., Equiangular lines, the graph extension theorem, and transfer in triply transitive groups, Math. Z., 135, 111-123, (1974) · Zbl 0351.20002
[5] Higman, D., Finite permutation groups of rank 3, Math. Z., 86, 145-156, (1964) · Zbl 0122.03205
[6] Higman, D.; Sims, C., A simple group of order 44, 352, 000, Math. Z., 105, 110-113, (1968) · Zbl 0186.04002
[7] Higman, G., On the simple group of D. G. higman and C. C. sims, Illinois J. math., 13, 74-80, (1969) · Zbl 0165.04001
[8] Huffman, A.J.; Singleton, R.R., On Moore graphs with diameter 2 and 3, I.B.M. J. res. develop., 4, 497-504, (1960) · Zbl 0096.38102
[9] Hubaut, X.L., Strongly regular graphs, Discrete math., 13, 357-371, (1975) · Zbl 0311.05122
[10] van Lint, J.H.; MacWilliams, F.J., Generalized quadratic residue codes, IEEE trans. inform. theory, IT-24, no. 6, 730-737, (1978) · Zbl 0395.94025
[11] MacWillams, F.J.; Sloane, N.J.A., The theory of error correcting codes, (1977), North-Holland Amsterdam · Zbl 0369.94008
[12] Ryser, H.J., The factors of a design matrix, J. combinatorial theory, 22, no. 2, 181-193, (1977) · Zbl 0353.05020
[13] Seidel, J.J., A survey of 2-graphs, (), 481-511
[14] Seidel, J.J.; Taylor, D.E., Two-graphs, a second survey, (), to appear · Zbl 0475.05073
[15] Sims, C.C., On the isomorphism of two groups of order 44, 352, 000, (), 101-108
[16] Shult, E.E., The graph extension theorem, (), 278-284, and supplement to “The Graph Extension Theorem,” mimeographed notes, University of Florida · Zbl 0241.20005
[17] Taylor, D.E., Regular 2-graphs, (), 257-274 · Zbl 0362.05065
[18] Ward, H.N., Quadratic residue codes and symplectic groups, J. algebra, 29, 150-171, (1974) · Zbl 0276.94002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.