×

zbMATH — the first resource for mathematics

The second conjugate algebra of the Fourier algebra of a locally compact group. (English) Zbl 0489.43006

MSC:
43A30 Fourier and Fourier-Stieltjes transforms on nonabelian groups and on semigroups, etc.
43A35 Positive definite functions on groups, semigroups, etc.
22D25 \(C^*\)-algebras and \(W^*\)-algebras in relation to group representations
43A65 Representations of groups, semigroups, etc. (aspects of abstract harmonic analysis)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Richard Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951), 839 – 848. · Zbl 0044.32601
[2] Frank F. Bonsall and John Duncan, Complete normed algebras, Springer-Verlag, New York-Heidelberg, 1973. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 80. · Zbl 0271.46039
[3] Paul Civin, Ideals in the second conjugate algebra of a group algebra, Math. Scand. 11 (1962), 161 – 174. · Zbl 0178.16603 · doi:10.7146/math.scand.a-10663 · doi.org
[4] Paul Civin and Bertram Yood, The second conjugate space of a Banach algebra as an algebra, Pacific J. Math. 11 (1961), 847 – 870. · Zbl 0119.10903
[5] N. Dunford and J. T. Schwartz, Linear operators. I, Interscience, New York, 1958. · Zbl 0084.10402
[6] Pierre Eymard, L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181 – 236 (French). · Zbl 0169.46403
[7] Edmond E. Granirer, Weakly almost periodic and uniformly continuous functionals on the Fourier algebra of any locally compact group, Trans. Amer. Math. Soc. 189 (1974), 371 – 382. · Zbl 0292.43015
[8] -, Density theorems for some linear subspaces and some \( {C^{\ast}}\)-subalgebras of \( VN(G)\), Sympos. Mat., vol. XXII, Istit. Nazionale di Alta Mat., 1977, pp. 61-70.
[9] -, On group representations whose \( {C^{\ast}}\)-algebra is an ideal in its von Neumann algebra (preprint).
[10] Frederick P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Mathematical Studies, No. 16, Van Nostrand Reinhold Co., New York-Toronto, Ont.-London, 1969. · Zbl 0174.19001
[11] Nathan Jacobson, Structure of rings, American Mathematical Society, Colloquium Publications, vol. 37, American Mathematical Society, 190 Hope Street, Prov., R. I., 1956. · Zbl 0073.02002
[12] Richard V. Kadison, Isometries of operator algebras, Ann. Of Math. (2) 54 (1951), 325 – 338. · Zbl 0045.06201 · doi:10.2307/1969534 · doi.org
[13] Anthony To Ming Lau, Uniformly continuous functionals on the Fourier algebra of any locally compact group, Trans. Amer. Math. Soc. 251 (1979), 39 – 59. · Zbl 0436.43007
[14] Horst Leptin, Sur l’algèbre de Fourier d’un groupe localement compact, C. R. Acad. Sci. Paris Sér. A-B 266 (1968), A1180 – A1182 (French). · Zbl 0169.46501
[15] Lynn H. Loomis, An introduction to abstract harmonic analysis, D. Van Nostrand Company, Inc., Toronto-New York-London, 1953. · Zbl 0052.11701
[16] P. F. Renaud, Invariant means on a class of von Neumann algebras, Trans. Amer. Math. Soc. 170 (1972), 285 – 291. · Zbl 0226.46065
[17] Shôichirô Sakai, \?*-algebras and \?*-algebras, Springer-Verlag, New York-Heidelberg, 1971. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 60. · Zbl 0233.46074
[18] Martin E. Walter, \?*-algebras and nonabelian harmonic analysis, J. Functional Analysis 11 (1972), 17 – 38. · Zbl 0242.22010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.