zbMATH — the first resource for mathematics

Automorphisms which centralize a Sylow p-subgroup. (English) Zbl 0489.20019

20D45 Automorphisms of abstract finite groups
20D20 Sylow subgroups, Sylow properties, \(\pi\)-groups, \(\pi\)-structure
20G40 Linear algebraic groups over finite fields
20D05 Finite simple groups and their classification
Full Text: DOI
[1] Aschbacher, M; Seitz, G, On groups with a standard component of known type, Osaka math. J., 13, 439-482, (1976) · Zbl 0374.20015
[2] Carter, R, Conjugacy classes in the Weyl group, (), 297-318
[3] Carter, R, Simple groups of Lie type, (1972), Wiley New York · Zbl 0248.20015
[4] Finkelstein, L, Finite groups with a standard component of type J4, Pacific J. math., 71, 41-56, (1977) · Zbl 0374.20016
[5] Gagen, T, Topics in finite groups, () · Zbl 0324.20013
[6] Glauberman, G, On the automorphism group of a finite group having no non-identity normal subgroup of odd order, Math. Z., 93, 154-160, (1966) · Zbl 0231.20004
[7] Griess, R; Lyons, R, The automorphism group of the Tits simple group ^2F4 (2)′, (), 75-78 · Zbl 0326.20010
[8] Hall, M, The theory of groups, (1959), Macmillan New York
[9] Hall, P; Higman, G, On the p-length of p-soluble groups and reduction theorems for Burnside’s problem, (), 1-42 · Zbl 0073.25503
[10] Scott, W, Group theory, (1964), Prentice-Hall Englewood Cliffs, N. J · Zbl 0126.04504
[11] Springer, T; Steinberg, R, Conjugacy classes, (), 167-266 · Zbl 0249.20024
[12] Steinberg, R, Endomorphisms of linear algebraic groups, Mem. amer. math. soc., 80, (1968) · Zbl 0164.02902
[13] Steinberg, R, Lectures on Chevalley groups, (1967), Yale University
[14] Weir, A, Sylow p-subgroups of the classical groups over finite fields with characteristic prime to p, (), 529-533 · Zbl 0065.01203
[15] Zassenhaus, H, The theory of groups, (1958), Chelsea New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.