×

zbMATH — the first resource for mathematics

Strong invariance for local times. (English) Zbl 0488.60045

MSC:
60F17 Functional limit theorems; invariance principles
60J55 Local time and additive functionals
60J65 Brownian motion
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Breiman, L.: On the tail behavior of sums of independent random variables. Z. Wahrscheinlichkeitstheorie verw. Geb. 9, 20-25 (1967) · Zbl 0339.60050
[2] Burkholder, D.L.: Distribution function inequalities for martingales. Ann. Probability 1, 19-42 (1973) · Zbl 0301.60035
[3] Chung, K.L., Hunt, G.A.: On the zeros of \(\sum\limits_1^n { \pm 1} \) . Ann. of Math. 50, 385-400 (1949) · Zbl 0032.41701
[4] Dobrushin, R.L.: Two limit theorems for the simplest random walk on a line. (In Russian). Uspehi Mat. Nauk (N.S.) 10, no. 3 (65), 139-146 (1955)
[5] Donsker, M.D., Varadhan, S.D.: On laws of the iterated logarithm for local times. Comm. Pure Appl. Math. 30, 707-754 (1977) · Zbl 0367.60095
[6] Kesten, H.: An iterated logarithm law for the local time. Duke Math. J. 32, 447-456 (1965) · Zbl 0132.12701
[7] Kesten, H., Spitzer, F.: A limit theorem related to a new class of self similar processes. Z. Wahrscheinlichkeitstheorie verw. Geb. 50, 5-25 (1979) · Zbl 0396.60037
[8] Knight, F.B.: Brownian local time and taboo processes. Trans. Amer. Math. Soc. 143, 173-185 (1969) · Zbl 0187.41203
[9] Knight, F.B.: Essentials of Brownian motion and diffusion, Mathematical Surveys 18, AMS (1981) · Zbl 0458.60002
[10] Lévy, P.: Processus Stochastique et Mouvement Brownien. Paris: Gauthier Villars 1948 · Zbl 0034.22603
[11] Loéve, M.: Probability Theory, 3rd ed. Princeton, N.J.: Van Nostrand-Reinhold 1963 · Zbl 0095.12201
[12] Révész, P.: Local time and invariance. Lecture Notes in Mathematics #861, p. 128-145. Berlin-Heidelberg-New York: Springer 1981
[13] Sawyer, S.: The Skorohod representation. Rocky Mountain J. Math. 4, 579-596 (1974) · Zbl 0292.60129
[14] Skorohod, A.V.: Studies in the Theory of Random Processes. (In Russian). Kiev: Kiev University Press 1961 (English translation: Reading: Addison-Wesley 1965)
[15] Spitzer, F.: Principles of Random Walk, 2nd ed. Berlin-Heidelberg-New York: Springer Verlag 1976 · Zbl 0359.60003
[16] Trotter, H.F.: A property of Brownian motion paths. Illinois J. Math. 2, 425-433 (1958) · Zbl 0117.35502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.