×

zbMATH — the first resource for mathematics

Geometry of the Fourier algebras and locally compact groups with atomic unitary representations. (English) Zbl 0488.43009

MSC:
43A30 Fourier and Fourier-Stieltjes transforms on nonabelian groups and on semigroups, etc.
43A65 Representations of groups, semigroups, etc. (aspects of abstract harmonic analysis)
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Baggett, L.: A separable group having a discrete dual space is compact. J. Functional Anal.10, 131-148 (1972) · Zbl 0252.22012 · doi:10.1016/0022-1236(72)90045-6
[2] Baggett, L., Taylor, K.: A sufficient condition for the complete reducibility of the regular representation. J. Functional Anal.34, 250-265 (1979) · Zbl 0425.22007 · doi:10.1016/0022-1236(79)90033-8
[3] Baggett, L., Taylor, K.: Groups with completely reducible regular representation. Proc. Am. Math. Soc.72, 593-600 (1978) · Zbl 0403.22007 · doi:10.1090/S0002-9939-1978-0509261-X
[4] Busemann, H.: The geometry of geodesics. New York: Academic Press 1955 · Zbl 0112.37002
[5] Chu, C.-H.: A note on scatteredC *-algebras and the Radon-Nikodym property. J. London Math. Soc.24, 533-536 (1981) · Zbl 0465.46053 · doi:10.1112/jlms/s2-24.3.533
[6] Diestel, J., Uhl, J.J., Jr.: Vector measures. Providence: American Mathematical Society 1977 · Zbl 0369.46039
[7] Dixmier, J.:C *-algebras. Amsterdam, New York, Oxford: North-Holland 1977 · Zbl 0372.46058
[8] Ernest, J.: A new group algebra for locally compact groups. I. Am. J. Math.86, 467-492 (1964) · Zbl 0211.15402 · doi:10.2307/2373020
[9] Eymard, P.: L’algebra de Fourier d’un groupe localement compact. Bul. Soc. Math. France92, 181-236 (1964) · Zbl 0169.46403
[10] Figà-Talamanca, A.: Positive definite functions which vanish at infinity. Pacific J. Math.69, 355-363 (1977) · Zbl 0309.43015
[11] Glimm, J.: Type IC * algebras. Ann. Math.73, 572-612 (1961) · Zbl 0152.33002 · doi:10.2307/1970319
[12] Granirer, E., Leinert, M.: On some topologies which coincide on the unit sphere of the Fourier-Stieltjes algebraB(G) and of the measure algebraM(G). Rocky Mountain J. Math.11, 459-472 (1981) · Zbl 0502.43004 · doi:10.1216/RMJ-1981-11-3-459
[13] Harrell, R.E., Karlovitz, L.A.: Girths and flat Banach spaces. Bull. Am. Math. Soc.76, 1288-1291 (1970) · Zbl 0212.14303 · doi:10.1090/S0002-9904-1970-12643-X
[14] Harrell, R.E., Karlovitz, L.A.: The geometry of flat Banach spaces. Trans. Am. Math. Soc.192, 209-218 (1974) · Zbl 0298.46016 · doi:10.1090/S0002-9947-1974-0338737-4
[15] Khalil, I.: Sur l’analyse harmonique du groupe affine de la droite. Studia Math.51, 139-167 (1974) · Zbl 0294.43007
[16] Mackey, G.W.: Borel structures in groups and their duals. Trans. Am. Math. Soc.85, 134-165 (1957) · Zbl 0082.11201 · doi:10.1090/S0002-9947-1957-0089999-2
[17] Mackey, G.W.: The theory of unitary group representations. Chicago: The University of Chicago Press 1976 · Zbl 0344.22002
[18] Schäffer, J.J.: Geometry of spheres in normed spaces. New York, Basel: Dekker 1976 · Zbl 0344.46038
[19] Taylor, K.F.: The type structure of the regular representation of a locally compact group. Math. Ann.222, 211-224 (1976) · Zbl 0324.43009 · doi:10.1007/BF01362578
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.