×

zbMATH — the first resource for mathematics

Generalized eigenvalue problems with positive semi-definite matrices. (English) Zbl 0487.65020

MSC:
65F15 Numerical computation of eigenvalues and eigenvectors of matrices
65F35 Numerical computation of matrix norms, conditioning, scaling
15A18 Eigenvalues, singular values, and eigenvectors
15A12 Conditioning of matrices
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Lee, A. Normal matrix Pencils.Periodica Mathematica Hungarica, 1971,1, 287–301. · Zbl 0235.15006 · doi:10.1007/BF02020313
[2] McDonald, R. P., Torii, Y., & Nishisato, S. Some results on proper eigenvectors with applications to scaling.Psychometrika, 1979,44, 211–228. · Zbl 0423.62088 · doi:10.1007/BF02293972
[3] Mitra, S. K. & Rao, C. R. Simultaneous reduction of a pair of quadratic forms.Sankhya(A), 1968,30, 313–322. · Zbl 0198.35204
[4] Muth, P. Ueber reelle Aequivalenz von Scharen reeller quadratischer Formen.Journal fur die Reine und Angewandte Mathematik, 1905,128, 302–321. · JFM 36.0169.01 · doi:10.1515/crll.1905.128.302
[5] Newcomb, R. W. On the simultaneous diagonalization of two semi-definite matrices.Quarterly of Applied Mathematics, 1961,19, 144–146. · Zbl 0103.25202
[6] Ng, D. An effective criterion for congruence of real symmetric matrix pairs.Linear Algebra and Applications, 1976,13, 11–18. · Zbl 0412.15007 · doi:10.1016/0024-3795(76)90038-0
[7] Uhlig, F. A canonical form for a pair of real symmetric matrices that generate a nonsingular pencil.Linear Algebra and Applications 1976,14, 189–209. · Zbl 0338.15009 · doi:10.1016/0024-3795(76)90066-5
[8] Uhlig, F. A recurring theorem about pairs of quadratic forms and extensions: a survey.Linear Algebra and Applications, 1979,25, 219–237. · Zbl 0408.15022 · doi:10.1016/0024-3795(79)90020-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.