×

zbMATH — the first resource for mathematics

Parameter identification via shifted Legendre polynomials. (English) Zbl 0486.93021

MSC:
93B30 System identification
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
93C15 Control/observation systems governed by ordinary differential equations
93B40 Computational methods in systems theory (MSC2010)
93C05 Linear systems in control theory
93C99 Model systems in control theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] CHEN C. F., Int. J. Control 21 pp 881– (1975) · Zbl 0308.49035 · doi:10.1080/00207177508922043
[2] CHEN W. L., Int. J. Control 27 pp 917– (1978) · Zbl 0378.93016 · doi:10.1080/00207177808922422
[3] GKADSHTEYN , I. S. , and RYZHIK , I. M. , 1979 ,Tables of Integrals, Series, and Products( Academic Press ), p. 1026 .
[4] HWANG C., Int. J. Systems Sci. 13 pp 783– (1982) · Zbl 0483.93056 · doi:10.1080/00207728208926388
[5] HSIAO C H., Comput. elect. Engng 6 pp 279– (1980) · Zbl 0431.45003 · doi:10.1016/0045-7906(79)90034-X
[6] SHIH Y. P., Int. J. Systems Sci. 9 pp 569– (1978) · Zbl 0385.65054 · doi:10.1080/00207727808941720
[7] SHIH Y. P., J. Dyn. Syst. Meas. Control 102 pp 159– (1980) · Zbl 0446.93051 · doi:10.1115/1.3139626
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.