×

zbMATH — the first resource for mathematics

Hyperbolic geometry: the first 150 years. (English) Zbl 0486.01006

MSC:
01A55 History of mathematics in the 19th century
01A60 History of mathematics in the 20th century
51-03 History of geometry
51M10 Hyperbolic and elliptic geometries (general) and generalizations
57R15 Specialized structures on manifolds (spin manifolds, framed manifolds, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] N. I. Lobachevsky, On the foundations of geometry, Kazan Messenger 25-28; German transl., ’Zwei geometrische Abhandlungen’, Leipzig, 1898.
[2] T. Clausen, Ueber die Function sin \varphi + (1/2., J. Reine Angew. Math. 8, 298-300. · ERAM 008.0308cj
[3] J. Bolyai, The absolute science of space, independent of the truth or falsity of Euclid’s Axiom 11 (which can never be proved a priori), Maros-Vásárhelyini. · JFM 27.0034.02
[4] N. I. Lobachevsky, Imaginary geometry and its application to integration, Kazan (German transl. Abh. Gesch. Math. 19, 1904).
[5] N. I. Lobachevsky, Géometrie imaginaire, J. Reine Angew. Math. 17, 295-320.
[6] A. Cayley, Sixth memoir upon quantics, Phil. Trans. 149, 61-91.
[7] B. Riemann, Ueber die Hypothesen welche der Geometrie zu Grunde liegen, Abh. K. G. Wiss. Göttingen 13 (from his Inaugural Address of 1854). · JFM 47.0770.01
[8] E. Beltrami, Saggio di interpetrazione della geometria non-euclidea, Gior. Mat. 6, 248-312 (Also Op. Mat. 1, 374-405; Ann. École Norm. Sup. 6 (1869), 251-288).
[9] E. Beltrami, Teoria fondamentale degli spazii di curvatura costante, Annali di mat. ser. II 2, 232-255 (Op. Mat. 1, 406-429; Ann. École Norm. Sup. 6 (1869), 345-375). · JFM 01.0208.03
[10] F. Klein, Über die sogenannte Nicht-Euklidische Geometrie, Math. Ann. 4, 573-625 (cf. Ges. Math. Abh. 1, 244-350). · JFM 03.0231.02
[11] E. Betti, Sopra gli spazi di un numero qualunque di dimensioni, Annali di mat. ser. II 4, 140-158. · JFM 03.0301.01
[12] H. A. Schwarz, Ueber diejenigen Fälle in welchen die Gaussische hypergeometrische Reihe eine algebraische Function ihres vierten Elementes darstellt, J. Reine Angew. Math. 75, 292-335 (Ges. Math. Abh. 2, 211-259). · JFM 05.0146.03
[13] H. Poincaré, Théorie des groupes fuchsiens, Acta Math. 1 (1882), no. 1, 1 – 76 (French). · JFM 14.0338.01
[14] H. Poincaré, Mémoire, Acta Math. 3 (1883), no. 1, 49 – 92 (French). Les groupes kleinéens. · JFM 15.0348.02
[15] E. Picard, Sur un groupe de transformations des Points de l’espace situés du même côté d’un plan, Bull. Soc. Math. France 12 (1884), 43 – 47 (French). · JFM 16.0732.01
[16] Walther Dyck, Beiträge zur Analysis situs, Math. Ann. 37 (1890), no. 2, 273 – 316 (German). · JFM 22.0547.02
[17] Felix Klein, Zur Nicht-Euklidischen Geometrie, Math. Ann. 37 (1890), no. 4, 544 – 572 (German). · JFM 22.0535.01
[18] Luigi Bianchi, Geometrische Darstellung der Gruppen linearer Substitutionen mit ganzen complexen Coefficienten nebst Anwendungen auf die Zahlentheorie, Math. Ann. 38 (1891), no. 3, 313 – 333 (German). · JFM 23.0216.01
[19] W. Killing, Ueber die Clifford-Klein’schen Raumformen, Math. Ann. 39, 258-278. · JFM 23.0529.01
[20] H. Poincaré, Analysis situs, J. École Polyt. 1, 1-121 (Oeuv. 6, 193-288). · JFM 26.0541.07
[21] J. Hadamard, Les surfaces à courbures opposées et leur lignes géodésiques, J. Math. Pures Appl. Ser. 5 4, 27-73 (Oeuv. 2, 729-775). · JFM 29.0522.01
[22] C. F. Gauss, Werke 8, 175-239.
[23] Heinrich Tietze, Über die topologischen Invarianten mehrdimensionaler Mannigfaltigkeiten, Monatsh. Math. Phys. 19 (1908), no. 1, 1 – 118 (German). · JFM 39.0720.05
[24] H. Gieseking, Analytische Untersuchungen ueber topologische Gruppen, Thesis, Muenster (Compare Magnus (1974), 153). · JFM 43.0202.03
[25] L. E. J. Brouwer, Über Abbildung von Mannigfaltigkeiten, Math. Ann. 71 (1911), no. 1, 97 – 115 (German). · JFM 42.0417.01
[26] O. Veblen and J. W. Alexander, Manifolds of n dimensions, Ann. of Math. (2) 14, 163-178. · JFM 44.0558.02
[27] H. Weyl, Die Idee der riemannschen Fläche, Teubner, Leipzig. · JFM 44.0492.01
[28] F. Hausdorff, Grundzüge der Mengenlehre, von Veit, Leipzig. · Zbl 0041.02002
[29] G. Humbert, Sur la mesure des Classes d’Hermite de discriminant donné dans un corps quadratique imaginaire, et sur certains volumes non euclidiens, Comptes Rendus (Paris) 169, 448-454. · JFM 47.0138.01
[30] E. Hecke, Vorlesungen über die Theorie der algebraischen Zahlen, Akad. Verl., Leipzig. · JFM 49.0106.10
[31] Heinz Hopf, Zum Clifford-Kleinschen Raumproblem, Math. Ann. 95 (1926), no. 1, 313 – 339 (German). · JFM 51.0439.05
[32] É. Cartan, Leçons sur la Géométrie des Espaces de Riemann, Gauthier-Villars, Paris, 1946 (French). 2d ed. · Zbl 0044.18401
[33] H. Hopf and W. Rinow, Ueber den Begriff der vollständigen differentialgeometrischen Fläche, Comment. Math. Helv. 3 (1931), no. 1, 209 – 225 (German). · Zbl 0002.35004
[34] H. S. M. Coxeter, Twelve geometric essays, Southern Illinois University Press, Carbondale, Ill.; Feffer & Simons, Inc., London-Amsterdam, 1968. · Zbl 0176.17101
[35] J. H. C. Whitehead, On doubled knots, J. London Math. Soc. 12, 63-71 (Works 2, 59-67). · Zbl 0016.04402
[36] H. S. M. Coxeter, Non-Euclidean Geometry, Mathematical Expositions, no. 2, University of Toronto Press, Toronto, Ont., 1942. · JFM 68.0322.02
[37] L. Lewin, Dilogarithms and associated functions, Foreword by J. C. P. Miller, Macdonald, London, 1958. · Zbl 0083.35904
[38] Armand Borel, Compact Clifford-Klein forms of symmetric spaces, Topology 2 (1963), 111 – 122. · Zbl 0116.38603
[39] G. A. Margulis, The isometry of closed manifolds of constant negative curvature with the same fundamental group, Dokl. Akad. Nauk SSSR 192 (1970), 736 – 737 (Russian). · Zbl 0213.48202
[40] E. M. Andreev, Convex polyhedra of finite volume in Lobačevskiĭ space, Mat. Sb. (N.S.) 83 (125) (1970), 256 – 260 (Russian).
[41] G. D. Mostow, The rigidity of locally symmetric spaces, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 187 – 197. · Zbl 0224.53028
[42] G. D. Mostow, Strong rigidity of locally symmetric spaces, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1973. Annals of Mathematics Studies, No. 78. · Zbl 0265.53039
[43] Gopal Prasad, Strong rigidity of \?-rank 1 lattices, Invent. Math. 21 (1973), 255 – 286. · Zbl 0264.22009
[44] Wilhelm Magnus, Noneuclidean tesselations and their groups, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1974. Pure and Applied Mathematics, Vol. 61. · Zbl 0293.50002
[45] Robert Riley, A quadratic parabolic group, Math. Proc. Cambridge Philos. Soc. 77 (1975), 281 – 288. · Zbl 0309.55002
[46] Avner Ash, Deformation retracts with lowest possible dimension of arithmetic quotients of self-adjoint homogeneous cones, Math. Ann. 225 (1977), no. 1, 69 – 76. · Zbl 0343.20026
[47] W. Thurston, Geometry and 3-manifolds, Lecture Notes, Princeton University. · Zbl 0483.57007
[48] Norbert Wielenberg, The structure of certain subgroups of the Picard group, Math. Proc. Cambridge Philos. Soc. 84 (1978), no. 3, 427 – 436. · Zbl 0399.57005
[49] Uffe Haagerup and Hans J. Munkholm, Simplices of maximal volume in hyperbolic \?-space, Acta Math. 147 (1981), no. 1-2, 1 – 11. · Zbl 0493.51016
[50] H. J. Munkholm, Simplices of maximal volume in hyperbolic space, Gromov’s norm, and Gromov’s proof of Mostow’s rigidity theory (following Thurston), pp. 109-124 of Topology Symposium-Siegen 1979, ed. Koschorke and Neumann, Springer Lecture Notes in Math., no. 788. · Zbl 0434.57017
[51] R. Rieley, Applications of a computer implementation of Poincaré’s theorem on fundamental polyhedra, preprint, I.A.S.
[52] R. Rieley, Seven excellent knots, preprint, I.A.S. · Zbl 0482.57004
[53] Marie-France Vignéras, Variétés riemanniennes isospectrales et non isométriques, Ann. of Math. (2) 112 (1980), no. 1, 21 – 32 (French). · Zbl 0445.53026
[54] A. Borel, Commensurability classes and volumes of hyperbolic 3-manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 8 (1981), no. 1, 1 – 33. · Zbl 0473.57003
[55] Michael Gromov, Hyperbolic manifolds (according to Thurston and Jørgensen), Bourbaki Seminar, Vol. 1979/80, Lecture Notes in Math., vol. 842, Springer, Berlin-New York, 1981, pp. 40 – 53.
[56] Dennis Sullivan, Travaux de Thurston sur les groupes quasi-fuchsiens et les variétés hyperboliques de dimension 3 fibrées sur \?\textonesuperior , Bourbaki Seminar, Vol. 1979/80, Lecture Notes in Math., vol. 842, Springer, Berlin-New York, 1981, pp. 196 – 214 (French).
[57] William P. Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 357 – 381. · Zbl 0496.57005
[58] William P. Thurston, Hyperbolic structures on 3-manifolds. I. Deformation of acylindrical manifolds, Ann. of Math. (2) 124 (1986), no. 2, 203 – 246. · Zbl 0668.57015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.