×

zbMATH — the first resource for mathematics

Regularity theory for almost minimal currents. (English) Zbl 0485.49024

MSC:
49Q15 Geometric measure and integration theory, integral and normal currents in optimization
58A25 Currents in global analysis
28A75 Length, area, volume, other geometric measure theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Almgren, F. J. Jr., Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints. Mem. Am. Math. Soc. 165 (1976). · Zbl 0327.49043
[2] Almgren, F. J. Jr., Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure. Ann. of Math. 87, 321-391 (1968). · Zbl 0162.24703
[3] De Giorgi, E., Frontiere orientate di misura minima. Sem. Mat. Scuola Normale Superiore Pisa, 1961. · Zbl 0296.49031
[4] Federer, H. & W. H. Fleming, Normal and integral currents. Ann. of Math. 72, 458-520 (1960). · Zbl 0187.31301
[5] Federer, H., Geometrie Measure Theory. New York: Springer 1969. · Zbl 0176.00801
[6] Miranda, M., Sul minimo dell’integrale del gradiente di una funzione. Annali Sc. Norm. Sup. Pisa 19, 627-665 (1965). · Zbl 0166.09604
[7] Morrey, C. B., Multiple integrals in the calculus of variations, New York: Springer 1966. · Zbl 0142.38701
[8] Reifenberg, R. E., Solution of the Plateau Problem for m-dimensional surfaces of varying topological type. Acta Mathematica 104, 1-92 (1960). · Zbl 0099.08503
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.