×

zbMATH — the first resource for mathematics

Contact processes in several dimensions. (English) Zbl 0483.60089

MSC:
60K35 Interacting random processes; statistical mechanics type models; percolation theory
82B43 Percolation
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Biggins, J.D.: The asymptotic shape of the branching random walk. Advances Appl. Probab. 10, 62-84 (1978) · Zbl 0383.60078
[2] Bramson, M., Griffeath, D.: On the Williams-Bjerknes tumor growth model. I. Ann. Probab. 9, 173-185 (1981) · Zbl 0459.92012
[3] Bramson, M., Griffeath, D.: On the Williams-Bjerknes tumor growth model: II. Math. Proc. Cambridge. Philos. Soc. 88, 339-357 (1980) · Zbl 0459.92013
[4] Cox, J.T., Durrett, R.: Some limit theorems for percolation processes with necessary and sufficient conditions. Ann. Probab. 9, 583-603 (1981) · Zbl 0462.60012
[5] Durrett, R.: On the growth of one dimensional contact processes. Ann. Probab. 8, 890-907 (1980) · Zbl 0457.60082
[6] Durrett, R.: An introduction to infinite particle systems. Stochastic Processes and their Applications 11, 109-150 (1981) · Zbl 0462.60095
[7] Durrett, R., Griffeath, D.: Supercritical contact processes on Z. Ann. Probab. [To appear 1982]
[8] Durrett, R., Liggett, T.: The shape of the limit set in Richardson’s growth model. Ann. Probab. 9, 186-193 (1981) · Zbl 0457.60083
[9] Griffeath, D.: Additive and Cancellative Interacting Particle Systems. Lecture Notes in Mathematics 724. New York-Berlin-Heidelberg: Springer, 1979 · Zbl 0412.60095
[10] Griffeath, D.: The basic contact processes. Stochastic Processes and their Applications 11, 151-185 (1981) · Zbl 0463.60085
[11] Hammersley, J.: Postulates for subadditive processes. Ann. Probab. 2, 652-680 (1974) · Zbl 0303.60044
[12] Harris, T.E.: Contact interactions on a lattice. Ann. Probab. 2, 969-988 (1974) · Zbl 0334.60052
[13] Harris, T.E.: On a class of set-valued Markov processes. Ann. Probab. 4, 175-194 (1976) · Zbl 0357.60049
[14] Harris, T.E.: Additive set-valued Markov processes and graphical methods. Ann. Probab. 6, 355-378 (1978) · Zbl 0378.60106
[15] Kesten, H.: Contribution to the discussion of [17]., 903 (1973) · Zbl 0291.60029
[16] Holley, R., Liggett, T.: The survival of contact processes. Ann Probab. 6, 198-206 (1978) · Zbl 0375.60111
[17] Kingman, J.F.C.: Subadditive ergodic theory. Ann. Probab. 1, 883-909 (1973) · Zbl 0311.60018
[18] Richardson, D.: Random growth in a tessellation. Proc. Cambridge Philos. Soc. 74, 515-528 (1973) · Zbl 0295.62094
[19] Rost, H.: Nonequilibrium behavior of a many particle process: density profile and local equilibria. Z. Wahrscheinlichkeitstheorie verw. Gebiete 58, 41-54 (1981) · Zbl 0451.60097
[20] Schürger, K.: On the asymptotic geometrical behavior of a class of contact interaction processes with a monotone infection rate. Z. Wahrscheinlichkeitstheorie verw. Gebiete 48, 35-48 (1979) · Zbl 0398.60098
[21] Williams, T., Bjerknes, R.: Stochastic model for abnormal clone spread through epithelial basal layer. Nature 236, 19-21 (1972)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.