zbMATH — the first resource for mathematics

Über die Klassifikation der symmetrischen hermiteschen Mannigfaltigkeiten unendlicher Dimension. I. (German) Zbl 0482.32010

32M15 Hermitian symmetric spaces, bounded symmetric domains, Jordan algebras (complex-analytic aspects)
17C50 Jordan structures associated with other structures
32K05 Banach analytic manifolds and spaces
46C99 Inner product spaces and their generalizations, Hilbert spaces
58B20 Riemannian, Finsler and other geometric structures on infinite-dimensional manifolds
17C65 Jordan structures on Banach spaces and algebras
17A40 Ternary compositions
46L99 Selfadjoint operator algebras (\(C^*\)-algebras, von Neumann (\(W^*\)-) algebras, etc.)
46H99 Topological algebras, normed rings and algebras, Banach algebras
Full Text: DOI EuDML
[1] Bonsall, F.F., Duncan, J.: Numerical ranges of operators on normed spaces and of elements of normed algebras. Cambridge: Cambridge University Press 1971 · Zbl 0207.44802
[2] Bonsall, F.F., Duncan, J.: Complete normed algebras. Berlin, Heidelberg, New York: Springer 1973 · Zbl 0271.46039
[3] Braun, H., Koecher, M.: Jordan-Algebren. Berlin, Heidelberg, New York: Springer 1966
[4] Cartan, É.: Sur les domaines bornés homogènes de l’espace de n variables complexes. Abh. Math. Sem. Univ. Hamburg11, 116-162 (1935) · Zbl 0011.12302 · doi:10.1007/BF02940719
[5] de la Harpe, P.: Classical Banach-Lie algebras and Banach-Lie groups of operators in Hilbert space. In: Lecture Notes in Mathematics, Vol. 285, Berlin, Heidelberg, New York: Springer 1970 · Zbl 0256.22015
[6] Harris, L.: Analytic invariants and the Schwarz-Pick inequality. Israel J. Math.34, 177-197 (1979) · Zbl 0455.32013 · doi:10.1007/BF02760882
[7] Harris, L.: A generalization ofC *-algebras. Erscheint in: Proc. Lond. Math. Soc.
[8] Helgason, S.: Differential geometry and symmetric spaces. London, New York: Academic Press 1962 · Zbl 0111.18101
[9] Jacobson, N.: Structure and representations of Jordan algebras. Am. Math. Soc. Colloq. Publ. 39. Providence 1968 · Zbl 0218.17010
[10] Kaup, W.: Algebraic characterization of symmetric complex manifolds. Math. Ann.228, 39-64 (1977) · Zbl 0344.58006 · doi:10.1007/BF01360772
[11] Kaup, W.: Jordan algebras and holomorphy. In: Functional analysis, holomorphy and approximation theory. In: Lecture Notes in Mathematics, Vol. 843, pp. 341-365. Berlin, Heidelberg, New York: Springer 1981 · Zbl 0466.32014
[12] Kaup, W., Upmeier, H.: Jordan algebras and symmetric Siegel domains in Banach spaces. Math. Z.157, 179-200 (1977) · Zbl 0357.32018 · doi:10.1007/BF01215150
[13] Koecher, M.: An elementary approach to bounded symmetric domains. Lecture Notes. Houston: Rice University 1969 · Zbl 0217.10901
[14] Korányi, A.: Analytic invariants of bounded symmetric domains. Proc. AMS19, 279-284 (1968) · Zbl 0187.02803 · doi:10.1090/S0002-9939-1968-0224864-1
[15] Loos, O.: Jordan Pairs. Lecture Notes in Mathematics, Vol. 460. Berlin, Heidelberg, New York: Springer 1975 · Zbl 0301.17003
[16] Loos, O.: Bounded symmetric domains and Jordan pairs. Lecture Notes. University of California at Irvine 1977
[17] Meyberg, K.: Jordan-Tripelsysteme und die Koecher-Konstruktion von Lie-Algebren. Math. Z.115, 58-78 (1970) · Zbl 0191.03003 · doi:10.1007/BF01109749
[18] Pjateckii-Sapiro, I.I.: Automorphic functions and the geometry of classical domains. New York, London, Paris: Gordon and Breach 1969
[19] Schatten, R.: Norm ideals of completely continuous operators. Berlin, Göttingen, Heidelberg: Springer 1960 · Zbl 0090.09402
[20] Størmer, W.: Jordan algebras of type I. Acta Math.115, 165-184 (1966) · Zbl 0139.30502 · doi:10.1007/BF02392206
[21] Vigué, J.-P.: Le groupe des automorphismes analytiques d’un domaine borné d’un espace de Banach complexe. Ann. Sci. Ecole norm. sup. IV. Sér.9, 203-282 (1976)
[22] Wong, P.: The dualp-class in a dualB *-algebra. Trans. Am. Math. Soc.200, 355-368 (1974) · Zbl 0289.46039
[23] Wright, J.D.M., Youngson, M.A.: A Russo dye theorem for JordanC *-algebras. Proceedings of: A Conference in Functional Analysis (Paderborn 1977). Amsterdam, London: North-Holland · Zbl 0372.46060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.