Adler, Allan On the automorphism groups of certain hypersurfaces. (English) Zbl 0479.20020 J. Algebra 72, 146-165 (1981). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 4 ReviewsCited in 4 Documents MSC: 20G20 Linear algebraic groups over the reals, the complexes, the quaternions 20G40 Linear algebraic groups over finite fields 14L35 Classical groups (algebro-geometric aspects) 20E07 Subgroup theorems; subgroup growth 14L30 Group actions on varieties or schemes (quotients) 14L24 Geometric invariant theory Keywords:finite subgroup of SL-n(C); maximal closed subgroup; closed subgroup; cubic invariant PDF BibTeX XML Cite \textit{A. Adler}, J. Algebra 72, 146--165 (1981; Zbl 0479.20020) Full Text: DOI References: [1] Adler, A, On the automorphism group of a certain cubic threefold, Amer. J. math., 100, 1275-1280, (1978) · Zbl 0405.14019 [2] Raïs, M, L’indice des produits semi-directs E × g, C. R. acad. sci. Paris ser. A, 287, 195-197, (1978) · Zbl 0387.17002 [3] Hecke, E, Mathematische werke, (1959), Vandenhoek Ruprecht Göttingen · Zbl 0092.00102 [4] Feit, W, Groups which have a faithful representation of degree less than p − 1, Trans. amer. math. soc., 112, 287-303, (1964) · Zbl 0117.27103 [5] Brauer, R; Brauer, R, On groups whose order contains a prime to the first power II, Amer. J. math., Amer. J. math., 64, 421-440, (1942) · Zbl 0061.03703 [6] Adler, A, Some integral representations of (\(F\)_p) and their applications, J. algebra, 72, 115-145, (1981) · Zbl 0479.20017 [7] Klein, F, Über die auflösung gleichungen siebenten und achten grades, Math. ann., 15, 251-282, (1879) · JFM 11.0074.03 [8] Weil, A, Sur certaines groupes d’operateurs unitaires, Acta math., (1964) · Zbl 0203.03305 [9] Dornhoff, L, Group representation theory, (1971-1972), Dekker New York · Zbl 0236.20004 [10] \scA. Grothendieck, “SGA II,” Springer Lecture Notes in Mathematics No. 244, Springer-Verlag, Berlin/Heidelberg/New York. · Zbl 0197.47202 [11] \scR. Hartshorne, “Ample Subvarieties of Algebraic Varieties,” Springer Lecture Notes in Mathematics No. 156, Springer-Verlag, Berlin/Heidelberg/New York. · Zbl 0208.48901 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.