zbMATH — the first resource for mathematics

Interaction of waves with shocks in magnetofluiddynamics. (English) Zbl 0478.76127

76W05 Magnetohydrodynamics and electrohydrodynamics
PDF BibTeX Cite
Full Text: DOI
[1] D’iakov, S. P.: The interaction of shock waves with small perturbations. Sov. Phys. JETP6, 729-747 (1958).
[2] Erpenbeck, J. J.: Stability of step shocks. Phys. Fluids5, 1181-1187 (1962). · Zbl 0111.38403
[3] Gardner, C. S.: Comment on ?stability of step shocks?. Phys. Fluids6, 1366-1367 (1963). · Zbl 0119.20202
[4] Fowles, G. R.: Conditional stability of shock waves ? a criterion for detonation. Phys. Fluids19, 227-238 (1976). · Zbl 0336.76027
[5] McKenzie, J. F., Westphal, K. O.: Interaction of linear waves with oblique shock waves. Phys. Fluids11, 2350-2362 (1968). · Zbl 0172.53203
[6] Jeffrey, A.: Quasilinear hyperbolic systems and waves, ch. 4. London-San Francisco-Melbourne: Pitman 1976. · Zbl 0322.35060
[7] Brun, L.: Ondes de choc finies dans les solides élastiques. In: Mechanical waves in solids (Mandel, J., Brun, L., eds.). Wien-New York: Springer 1975.
[8] Lax, P. D.: Hyperbolic systems of conservation laws. Comm. Pure Appl. Math.10, 537-566 (1957). · Zbl 0081.08803
[9] Morro, A.: Interaction of shock waves with acoustic waves. Rend. Atti Accad. Naz. Lincei64, 177-185 (1978). · Zbl 0433.73025
[10] Morro, A.: Interaction of acoustic waves with shock waves in elastic solids. Z. Angew. Math. Phys.29, 822-827 (1978). · Zbl 0387.76069
[11] naletova, V. A., Shaposhnikova, G. A.: Disintegration of an arbitrary discontinuity in a perfectly conducting magnetizable incompressible medium. J. Appl. Math. Mech.40, 816-826 (1976). · Zbl 0366.76086
[12] Naletova, V. A., Shaposhnikova, G. A.: Interaction of discontinuities in magnetizable ideally-conducting incompressible media. J. Appl. Math. Mech.41, 47-51 (1977). · Zbl 0389.76070
[13] Gogosov, V. V.: Interaction of magnetohydrodynamic waves with contact and vortex discontinuities. J. Appl. Math. Mech.25, 277-290 (1961).
[14] Gogosov, V. V.: Interaction of magnetohydrodynamic waves. J. Appl. Math. Mech.25, 678-693 (1961).
[15] Akhiezer, A. I., Liubarskii, G. I., Polovin, R. V.: The stability of shock waves in magnetohydrodynamics. Sov. Phys. JETP35, 507-511 (1959). · Zbl 0085.21204
[16] Truesdell, C., Toupin, R. A.: The classical field theories (Handbuch der Physik, III/1). Berlin-Göttingen-Heidelberg: Springer 1960.
[17] Cabannes, H.: Theoretical Magnetofluiddynamics, chs. 2, 3. New York-London: Academic Press 1960.
[18] Unti, T. W. J., Neugebauer, M.: Alfvén waves in the solar wind. Phys. Fluids11, 563-568 (1968).
[19] Swan, G. W., Fowles, G. R.: Shock wave stability. Phys. Fluids18, 28-35 (1975). · Zbl 0321.76022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.