×

zbMATH — the first resource for mathematics

Penalty-finite element methods for the analysis of Stokesian flows. (English) Zbl 0478.76041

MSC:
76D07 Stokes and related (Oseen, etc.) flows
76M99 Basic methods in fluid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65D30 Numerical integration
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Babuska, I., The finite element method with Lagrange multipliers, Numer. math., 20, (1973)
[2] Babuska, I.; Aziz, A.K., Survey lecture on the mathematical foundations of the finite element method, () · Zbl 0268.65052
[3] Bercovier, M., Perturbation of mixed variational problems—applications to mixed finite element methods, R.a.i.r.o., 12, 3, 211-236, (1978) · Zbl 0428.65059
[4] M. Bercovier and M. Engelman, A finite element for the numerical solution of viscous incompressible flows, J. Comput. Phys., to appear. · Zbl 0395.76040
[5] Brezzi, F., On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, R.a.i.r.o., 8, 129-151, (1974) · Zbl 0338.90047
[6] Brezzi, F., Sur l’existence, unicité, et approximation de problèmes de point de selle, C.R. acad. sci. Paris, Sér. A., 278, 839-842, (1974) · Zbl 0301.65031
[7] Ciarlet, P., Numerical analysis of the finite element method for elliptic boundary value problems, (1978), North-Holland Amsterdam
[8] Ciarlet, P.; Raviart, P.A., General Lagrange and Hermite interpolation in Rn with applications to finite element methods, Arch. rational mech. anal., 46, 177-199, (1972) · Zbl 0243.41004
[9] Crouzeix, M.; Raviart, P.A., Conforming and nonconforming finite element methods for solving the stationary Stokes equations, R.a.i.r.o., 3, 33-76, (1974) · Zbl 0302.65087
[10] Fortin, M., An analysis of the convergence of mixed finite element methods, R.a.i.r.o., 11, 4, 341-354, (1977) · Zbl 0373.65055
[11] Fried, I., Finite element analysis of incompressible material by residual energy balancing, Internat. J. solids and structures, 10, 993-1002, (1974) · Zbl 0281.73045
[12] Girault, V.; Raviart, P.A., An analysis of a mixed finite element method for the Navier-Stokes equations, () · Zbl 0396.65070
[13] Girault, V.; Raviart, P.A., Finite element approximation of the Navier-Stokes equations, () · Zbl 0396.65070
[14] Hughes, T.J.R., Equivalence of finite elements for nearly incompressible elasticity, () · Zbl 1295.74019
[15] Hughes, T.J.R., Equivalence of finite elements for nearly incompressible elasticity, J. appl. mech., 44, 181-183, (1977)
[16] Hughes, T.J.R.; Taylor, R.L.; Levy, J.F., A finite element method for incompressible viscous flows, second internat, () · Zbl 0442.76027
[17] Kikuchi, N., Convergence of a penalty method for variational inequalities, (), 16
[18] Johnson, C.; Pitkaranta, J., Analysis of some mixed finite element methods related to reduced integration, () · Zbl 0482.65058
[19] Ladyszhenskaya, O.A., The mathematical theory of viscous incompressible flows, (1969), Gordon and Breach New York
[20] Lee, R.L.; Gresho, P.M.; Sani, R.L., Smoothing techniques for certain primitive variable solutions of the Navier-Stokes equations, Internat. J. numer. meths. engrg., 14, 1785-1804, (1979) · Zbl 0426.76035
[21] Malkus, D.S., Finite element analysis of incompressible solids, () · Zbl 0472.73088
[22] Reddy, J.N., On the accuracy and existence of solutions to primitive variable models of viscous incompressible A unification of concepts, Comput. meths. appl. mech. engrg., 15, 63-81, (1978)
[23] Reddy, J.N., On the accuracy and existence of solutions to primitive variable models of viscous incompressible fluids, Internat. J. engrg. sci., 16, 921-929, (1978) · Zbl 0395.76027
[24] Teman, R., Navier Stokes equations, (1977), North-Holland Amsterdam · Zbl 0406.35053
[25] Zienkiewicz, O.C.; Taylor, R.L.; Too, J.M., Reduced integration technique in general analysis of plates and shells, Internat. J. numer. meths. engrg., 3, 275-290, (1971) · Zbl 0253.73048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.