×

zbMATH — the first resource for mathematics

Accelerated solution techniques and concrete cracking. (English) Zbl 0478.73088

MSC:
74R05 Brittle damage
74S30 Other numerical methods in solid mechanics (MSC2010)
74E30 Composite and mixture properties
49M15 Newton-type methods
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Zienkiewicz, O.C., The finite element method, (1977), McGraw-Hill London · Zbl 0435.73072
[2] Matthies, G.; Strang, G., The solution of non-linear finite element equations internat, J. numer. meths. engrg., 14, 1613-1626, (1979) · Zbl 0419.65070
[3] Crisfield, M.A., Incremental/iterative solution procedures for non-linear structural analysis, (), 261-290
[4] Crisfield, M.A., Iterative solution procedures for linear and non-linear structural analysis, () · Zbl 0605.73062
[5] Crisfield, M.A., A faster modified Newton-raphson iteration, Comput. meths. appl. mech. engrg., 20, 267-278, (1979) · Zbl 0434.73086
[6] Irons, B.; Elsawaf, A., The conjugate-Newton algorithm for solving finite element equations, (), 656-672
[7] Elsawaf, A., The conjugate-Newton method for non-linear finite element problems, ()
[8] Crisfield, M.A., A fast incremental/iterative solution procedure that handles ‘snap through’, Comput. and structures, 13, 55-62, (1981) · Zbl 0479.73031
[9] Ramm, E., Strategies for tracing non-linear responses near limit points, (), 63-89
[10] Wolfe, M.A., Numerical methods for unconstrained optimisation—an introduction, (1975), Van Nostrand London · Zbl 0379.65033
[11] Broyden, C.G., The convergence of a double-rank minimisation. part 2: the new algorithm, J. inst. math. appl., 6, 222-231, (1970) · Zbl 0207.17401
[12] Fletcher, R., A new approach to variable metric algorithms, Comput. J., 13, 163-168, (1970)
[13] Jennings, A.; Malik, G.M., The solution of sparse linear equations by the conjugate gradient method, Internat. J. numer. meths. engrg., 12, 141-158, (1978) · Zbl 0367.65020
[14] Shanno, D.F., Conjugate gradient methods with inexact line searches, Math. oper. res., 13, 244-255, (1978) · Zbl 0399.90077
[15] Buckley, A.G., A combined conjugate-gradient quasi-Newton minimisation algorithm, Math. programming, 15, 200-210, (1978) · Zbl 0386.90051
[16] Crisfield, M.A., The automatic non-linear analysis of stiffened plates and shallow shells, (), 891-909, Part 2
[17] Scanlon, A., Time dependent deflections of reinforced concrete slabs, ()
[18] Lin, C.-S.; Scordelis, A.C., Non-linear analysis of reinforced concrete shells of general form, J. structures div. amer. soc. civ. engrs., 101, 523-538, (1975), ST3
[19] Gilbert, R.I.; Warner, R.F., Tension stiffening in reinforced concrete slabs, J. structures div. amer. soc. civ. engrs., 104, 1885-1900, (1978), ST12
[20] Riks, E., The application of Newton’s method to the problem of elastic stability, J. appl. mech., 39, 1060-1066, (1972) · Zbl 0254.73047
[21] Wempner, G.A., Discrete approximations related to non-linear theories of solids, Internat. J. solids and structures, 7, 1581-1599, (1971) · Zbl 0222.73054
[22] Bathe, K.-J.; Cimento, A.P., Some practical procedures for the solution of non-linear finite element equations, Comput. meths. appl. mech. engrg., 22, 59-86, (1980)
[23] Argyris, J.H.; Faust, G.; Willam, K.J., Finite element modelling of reinforced concrete structures, (), 85-106 · Zbl 0352.73028
[24] Cope, R.J.; Rao, P.V., Non-linear finite element strategies for bridge slabs, (), 273-288
[25] Hinton, E.; Rahman, H.H.Abdel; Zienkiewicz, O.C., Computational strategies for reinforced concrete slab systems, (), 303-313
[26] Argyris, J.H.; Vaz, L.E.; Willam, K.J., Improved solution methods for inelastic rate problems, Comput meths. appl. mech. engrg., 16, 231-277, (1978) · Zbl 0405.73068
[27] Key, S.W.; Stone, C.M.; Krieg, R.D., Dynamic relaxation applied to the quasi-static, large deformation, inelastic response of axisymmetric solids, (), 585-620 · Zbl 0471.73077
[28] Gill, P.E.; Murray, W., Safeguarded step-length algorithms for optimisation using descent methods, ()
[29] Bergan, P.G.; Soreide, T., Solution of large displacement and stability problems using the current stiffness parameter, (), 647-669
[30] Zienkiewicz, O.C.; Cheung, Y.K., The finite element method for the analysis of elastic isotropic and orthotropic slabs, (), 471-488
[31] Bergan, P.G.; Holand, I., Non-linear finite element analysis of concrete structures, Comput meths. appl. mech. engrg, 17/18, 443-467, (1979) · Zbl 0398.73080
[32] Jain, S.C.; Kennedy, J.B., Yield criterion for reinforced concrete slabs, J. structures div. amer. soc. civ. engrs., 100, 631-644, (1974), ST3
[33] Bazant, Z.P., Advances in deformation and failure models for concrete, (), 9-39
[34] Pietruszczak, St.; Mroz, Z., Finite element analysis of deformation of strain-softening materials, Internat. J. numer. meth. engrg., 17, 327-334, (1981) · Zbl 0461.73063
[35] Bazant, Z.P.; Cedolin, L., Blunt crack propagation in finite element analysis, J. engrg. mech. div. amer. soc. civ. engrs., 105, 297-315, (1979), EM2
[36] Jofreit, J.C.; McNeice, G.M., Finite element analysis of reinforced concrete slabs, J. structures div. amer. soc. civ. engrs., 97, 785-805, (1971), ST3
[37] Duddeck, H.; Griebenou, G.; Schaper, G., Material and time dependent non-linear behaviour of cracked reinforced concrete slabs — finite element analysis and laboratory tests, (), 101-113
[38] Mueller, G., Numerical problems in non-linear analysis of reinforced concrete, ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.