zbMATH — the first resource for mathematics

Estimation of interaction potentials of spatial point patterns through the maximum likelihood procedure. (English) Zbl 0478.62078

62M99 Inference from stochastic processes
62P99 Applications of statistics
82B05 Classical equilibrium statistical mechanics (general)
65C05 Monte Carlo methods
82B30 Statistical thermodynamics
82B99 Equilibrium statistical mechanics
Full Text: DOI
[1] Akaike, H.; Krishnaiah, P. R. (ed.), On entropy maximization principle, 27-41, (1977), Amsterdam
[2] Bartlett, M. S., The spectral analysis of two-dimensional point processes, Biometrika, 44, 299-311, (1964) · Zbl 0124.08601
[3] Baudin, M. (1980). Likelihood and nearest neighbor distance properties of multidimensional Poisson cluster processes, submitted toJ. Appl. Prob. · Zbl 0475.60033
[4] Besag, J.; Diggle, P. J., Simple Monte Carlo tests for spatial pattern, Appl. Statist., 26, 327-333, (1977)
[5] Diggle, P. J., On parameter estimation and goodness-of-fit testing for spatial patterns, Biometrics, 35, 87-101, (1979) · Zbl 0418.62075
[6] Feynman, R. P. (1972).Statistical Mechanics: A Set of Lectures, Benjamin, Reading. · Zbl 0997.82500
[7] Fisher, L.; Lewis, P. A. W. (ed.), A survey of the mathematical theory of multidimensional point processes, 468-513, (1972), New York
[8] Hasegawa, M. and Tanemura, M. (1978). Mathematical models on spatial patterns of territories,Proceedings of the international symposium on mathematical topics in biology, Kyoto, Japan, Sept. 11-12, 1978, 39-48. · Zbl 0423.92038
[9] Howell, T. R.; Araya, B.; Millie, W. R., Breeding biology of the Gray Gull, Larus modestus, Univ. Calif. Publ. Zool, 104, 1-57, (1974)
[10] Matérn, B., Spatial variation, Meddelanden fran Statens Skogsforskningsinstitut, 49, 1-144, (1960)
[11] Mayer, J. E. and Mayer, M. G. (1940).Statistical Mechanics, John Wiley, New York. · JFM 66.1175.01
[12] Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E., Equation of state calculations by fast computing machines, J. Chem. Phys., 21, 1087-1092, (1953)
[13] Numata, M., Forest vegetation in the vicinity of Choshi-coastal flora and vegetation at Choshi, Chiba Prefecture, IV, Bull. Choshi Marine Laboratory, 3, 28-48, (1961)
[14] Numata, M., Forest vegetation, particularly pine stands in the vicinity of Choshi-flora and vegetation at Choshi, Chiba Prefecture, VI, Bull. Choshi Marine Laboratory, 6, 27-37, (1964)
[15] Ogata, Y., The asymptotic behaviour of maximum likelihood estimators for stationary point processes, Ann. Inst. Statist. Math., 30, 243-261, (1978) · Zbl 0451.62067
[16] Ogata, Y., Maximum likelihood estimates of incorrect Markov models for time series and the derivation of AIC, J. Appl. Prob., 17, 59-72, (1980) · Zbl 0444.62098
[17] Ogata, Y., On Lewis’ simulation method for point processes, IEEE Trans. Inform. Theory, 1, 23-31, (1981) · Zbl 0449.60037
[18] Ripley, B. D., Modelling spatial patterns (with discussion), J. R. Statist. Soc., 39, 172-212, (1977) · Zbl 0369.60061
[19] Sakamoto, Y.; Akaike, H., Analysis of cross classified data by AIC, Ann. Inst. Statist. Math., 30, 185-197, (1978) · Zbl 0443.62040
[20] Tanemura, M.; Hasegawa, M., Geometrical models of territory. I. Models for synchronous and asynchronous settlement of territories, J. Theor. Biol., 82, 477-496, (1980)
[21] Vere-Jones, D., Stochastic models for earthquake occurrences (with discussion), J. R. Statist. Soc., 32, 1-62, (1970) · Zbl 0201.27702
[22] Vere-Jones, D., Space time correlations for microearthquakes—a pilot study, Suppl. Adv. Appl. Prob., 10, 73-87, (1978) · Zbl 0393.60051
[23] Wood, W. W.; Temperley, H. N. V. (ed.); Rowlinson, J. S. (ed.); Rushbrooke, G. S. (ed.), Monte Carlo studies of simple liquid models, 115-230, (1968), Amsterdam
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.