×

zbMATH — the first resource for mathematics

n:m phase-locking of weakly coupled oscillators. (English) Zbl 0476.92007

MSC:
92Cxx Physiological, cellular and medical topics
34C25 Periodic solutions to ordinary differential equations
37-XX Dynamical systems and ergodic theory
92B05 General biology and biomathematics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Boiteux, A., Goldbeter, A., Hess, B.: Control of oscillating glycolysis of yeast by stochastic, periodic, and steady source of substrate: A model and experimental study. Proc. Natl. Acad. Sci. USA 72, 3829-3833 (1975) · doi:10.1073/pnas.72.10.3829
[2] Ermentrout, G. B., Rinzel, J.: Waves in a simple, excitable or oscillatory, reaction-diffusion model. J. Math. Biol. 11, 269-294 (1981) · Zbl 0456.92025 · doi:10.1007/BF00276897
[3] Fenichel, N.: Persistence and smoothness of invariant manifolds of flows. Ind. Math. J. 21, 193-226 (1971) · Zbl 0246.58015 · doi:10.1512/iumj.1971.21.21017
[4] Flaherty, J. E., Hoppensteadt, F. C.: Frequency entrainment of a forced van der Pol oscillator. Stud. Appl. Math. 58, 5-15 (1978) · Zbl 0384.34023
[5] Glass, L., Mackey, M.: A simple model for phase locking of biological oscillators. J. Math. Biol. 7, 339-352 (1979) · Zbl 0397.92006 · doi:10.1007/BF00275153
[6] Grasman, J., Veling, E. J. M., Willems, G. M.: Relaxation oscillations governed by a van der Pol equation. SIAM J. Appl. Math. 31, 667-676 (1976) · Zbl 0355.34045 · doi:10.1137/0131059
[7] Grasman, J., Jansen, M. J. W.: Mutually synchronized relaxation oscillators as prototypes of oscillating systems in biology. J. Math. Biol. 7, 171-197 (1979) · Zbl 0398.92005
[8] Hale, J. K.: Ordinary differential equations. New York: Wiley-Interscience 1969 · Zbl 0186.40901
[9] Holmes, P. J.: A nonlinear oscillator with a strange attractor. Phil. Trans. Roy. Soc. London A292, 419-448 (1979) · Zbl 0423.34049
[10] Holmes, P. J.: Averaging and chaotic motions in forced oscillations. SIAM J. Appl. Math. 38, 65-80 (1980) · Zbl 0472.70024 · doi:10.1137/0138005
[11] Holmes, P. J.: Phaselocking and chaos in coupled limit cycle oscillators. Preprint (1981)
[12] Keener, J. P., Hoppensteadt, F. C., Rinzel, J.: Integrate-and-fire models of nerve membrane response to oscillatory input. SIAM J. Appl. Math. Preprint (1981) · Zbl 0476.92010
[13] Levinson, N.: Small periodic perturbations of an autonomous system with a stable orbit. Ann. Math. 52, 727-738 (1950) · Zbl 0038.24903 · doi:10.2307/1969445
[14] Littlewood, J. E.: On nonlinear differential equations of the second order. III. Acta. Math. 97, 267-308 (1957) · Zbl 0081.08401 · doi:10.1007/BF02392400
[15] Neu, J. C.: Nonlinear oscillations in discrete and continuous systems. Ph.D. Thesis, California Institute of Technology, June 1978
[16] Perkel, D. H., Schulman, J. H., Bullock, T. H., Moore, G. P., Segundo, J. P.: Pacemaker neurons: Effect of regularly spaced synaptic input. Science 145, 61-63 (1964) · doi:10.1126/science.145.3627.61
[17] Rand, R. H., Holmes, P. J.: Bifurcation of periodic motions in two weakly coupled van der Pol oscillators. Preprint (1981) · Zbl 0447.70028
[18] Reid, J. V. O.: The cardiac pacemaker: Effects of regularly spaced nervous input. Amer. Heart J. 78, 58-64 (1969) · doi:10.1016/0002-8703(69)90259-2
[19] Stein, P. S. G.: Application of the mathematics of coupled oscillator systems to the analysis of the neural control of locomotion. Fed. Proc. 36, 2056-2059 (1977)
[20] Wever, R. A.: The arcadian system of man. New York: Springer 1979
[21] Winfree, A. T.: The geometry of biological time. Biomathematics Vol. 8. New York: Springer 1980 · Zbl 0464.92001
[22] Yamanishi, J., Kawato, M., Suzuki, R.: Two coupled oscillators as a model for coordinated fingertapping by both hands. Biol. Cybern. 37, 219-227 (1980) · doi:10.1007/BF00337040
[23] Guttman, R., Feldman, L., Jakobsson, E.: Frequency entrainment of squid axon membrane. J. Memb. Biol. 56, 9-18 (1980) · doi:10.1007/BF01869347
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.