×

zbMATH — the first resource for mathematics

Semantics of probabilistic programs. (English) Zbl 0476.68019

MSC:
68Q60 Specification and verification (program logics, model checking, etc.)
68N01 General topics in the theory of software
PDF BibTeX Cite
Full Text: DOI
References:
[1] Adleman, L., Two theorems on random polynomial time, (), 75-83
[2] Backus, J., The Fortran automatic coding system, (), 188-198
[3] Birkhoff, G., Dependent probabilities and the spaces (L), (), 154-159 · JFM 64.0535.01
[4] Birkhoff, G., Lattice theory, (), Providence, R. I. · Zbl 0126.03801
[5] Chung, K.L., A course in probability theory, (1974), Academic Press New York · Zbl 0159.45701
[6] Collatz, L., Functional analysis and numerical mathematics, (1966), Academic Press New York · Zbl 0221.65088
[7] Dunford, N.; Schwartz, J., ()
[8] Feller, W., ()
[9] Floyd, R.; Rivest, R., Expected time for selection, Comm. assoc. comput. Mach., 18, 165-172, (1975) · Zbl 0296.68049
[10] Gill, J., Computational complexity of probabilistic Turing machines, (), 91-95
[11] Gouda, M.; Manning, E., Probabilistic cost machines, (), 462
[12] Halmos, P., Measure theory, (1950), Van Nostrand New York · Zbl 0040.16802
[13] Kakutani, S., Concrete representation of abstract (L)-spaces and the Mean ergodic theorem, Ann. of math., 42, 523-537, (1941) · JFM 67.0419.01
[14] Karp, R., Probabilistic analysis of combinatorial search, (), 1-20
[15] Knuth, D., ()
[16] Kurtz, T.E., SIGPLAN notices, 13, 8, 103-118, (1978)
[17] Lehmann, D., Categories for fixpoint semantics, (), 122-126
[18] Manna, Z., Mathematical theory of computation, (1974), McGraw-Hill New York · Zbl 0353.68066
[19] Miller, G., Riemann’s hypothesis and tests for primality, (), 234-239
[20] Paz, A., Introduction to probabilistic automata, (1971), Academic Press New York · Zbl 0234.94055
[21] Plotkin, G., A powerdomain construction, SIAM J. comput., 5, 452-487, (1976) · Zbl 0355.68015
[22] Rabin, M.O., Probabilistic algorithms, (), 21-40
[23] Ramshaw, L.H., Formalizing the analysis of algorithms, ()
[24] Scott, D., Outline of a mathematical theory of computation, (), 169-176
[25] Scott, D.; Strachey, C., Towards a mathematical semanties for computer languages, ()
[26] Solovay, R.; Strassen, V., Fast Monte Carlo tests for primality, SIAM J. comput., 684-685, (1977) · Zbl 0345.10002
[27] Vuillemin, J., Proof techniques for recursive programs, ()
[28] Yao, A., Probabilistic computations: toward a unified measure of complexity, (), 222-227
[29] Yao, A.; Yao, F., On the average case complexity of selecting the kth best, (), 180-289
[30] Zeiger, H.P., Formal models for some features of programming languages, (), 211-215 · Zbl 1282.68090
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.