×

zbMATH — the first resource for mathematics

A note on unbiasedness in ratio estimation. (English) Zbl 0475.62007

MSC:
62D05 Sampling theory, sample surveys
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Durbin, J., A note on the application of Quenouille’s method of bias reduction to the estimation of ratios, Biometrika, 46, 477-480, (1959) · Zbl 0090.36501
[2] Hartley, H.O.; Ross, A., Unbiased ratio estimators, Nature, 174, 270-271, (1954)
[3] Hitchison, M.C., A Monte Carlo comparison of some ratio estimators, Biometrika, 58, 313-321, (1971) · Zbl 0226.62011
[4] Murthy, M.N., Sampling theory and methods, (1967), Statistical Publishing Society Calcutta · Zbl 0183.20602
[5] Murthy, M.N.; Nanjamma, N.S., Almost unbiased ratio estimates based on interpenetrating sub-sample estimates, Sankhya, 21, 381-392, (1959) · Zbl 0099.14101
[6] Nieto de Pascual, J., Unbiased ratio estimates in stratified sampling, J. amer. statist. assoc., 56, 70-87, (1961) · Zbl 0102.15101
[7] Quenouille, M.H., Notes on bias in estimation, Biometrika, 43, 353-360, (1956) · Zbl 0074.14003
[8] Rao, J.N.K., Ratio and regression estimators, (), 213-234
[9] Rao, J.N.K.; Webster, J.T., On two methods of bias reduction in the estimation of ratios, Biometrika, 53, 571-577, (1966) · Zbl 0147.18201
[10] Rao, P.S.R.S., Comparison of four ratio-type estimators under a model, J. amer. statist. assoc., 64, 574-580, (1969)
[11] Rao, T.J., On certain unbiased ratio estimators, Ann. inst. stat. math., 18, 117-121, (1966) · Zbl 0141.34504
[12] Schucany, W.R.; Gray, H.L.; Owen, D.B., Bias reduction in estimation, J. amer. statist. assoc., 66, 524-533, (1971) · Zbl 0226.62022
[13] Sharot, P., Sharpening the jackknife, Biometrika, 63, 315-321, (1976) · Zbl 0332.62020
[14] Tukey, J.W., Bias and confidence in not-quite large samples, Ann. math. stat., 29, 614, (1958), (abstract)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.