×

zbMATH — the first resource for mathematics

Duality theory for maximizations with respect to cones. (English) Zbl 0474.90081

MSC:
90C48 Programming in abstract spaces
49N15 Duality theory (optimization)
46B99 Normed linear spaces and Banach spaces; Banach lattices
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Achilles, A; Elster, K.-H; Nehse, R, Bibliographie zur vektoroptimierung (theorie und anwendungen), Math. operationsforsch. statist. ser. optim., 10, 277-321, (1979) · Zbl 0416.90066
[2] Borwein, J, Proper efficient points for maximizations with respect to cones, SIAM J. control optim., 15, 57-63, (1977) · Zbl 0369.90096
[3] Cesari, L; Suryanarayana, M.B, Existence theorems for Pareto optimization; multivalued and Banach space valued functionals, Trans. amer. math. soc., 244, 37-65, (1978) · Zbl 0393.49004
[4] Christopeit, N, Necessary optimality conditions with application to a variational problem, SIAM J. control optim., 15, 683-698, (1977) · Zbl 0358.49010
[5] Corley, H.W, A new scalar equivalence for Pareto optimization, IEEE trans. automat. control, AC-25, 829-830, (1980) · Zbl 0443.90099
[6] Corley, H.W, An existence result for maximizations with respect to cones, J. optim. theory appl., 31, 277-281, (1980) · Zbl 0416.90068
[7] \scH. W. Corley, Optimality conditions for maximizations with respect to cones, submitted for publication. · Zbl 0542.90088
[8] Craven, B.D, Nonlinear programming in locally convex spaces, J. optim. theory appl., 10, 197-210, (1972) · Zbl 0229.90041
[9] Craven, B.D, Langrangean conditions and quasiduality, Bull. austral. math. soc., 16, 325-339, (1977) · Zbl 0362.90106
[10] DaCunha, N.O; Polak, E, Constrained minimization under vector-valued criteria in finite dimensional spaces, J. math. anal. appl., 19, 103-124, (1967) · Zbl 0154.44801
[11] Dunford, N; Schwartz, J.T, Linear operators, part 1, (1966), Interscience New York · Zbl 0146.12601
[12] Edwards, R, Functional analysis: theory and applications, (1965), Holt, Rinehart, and Winston New York · Zbl 0182.16101
[13] Geoffrion, A.M, Proper efficiency and the theory of vector maximization, J. math. anal. appl., 22, 618-630, (1968) · Zbl 0181.22806
[14] Geoffrion, A.M, Duality in nonlinear programming: a simplified applications-oriented development, SIAM rev., 13, 1-37, (1971) · Zbl 0232.90049
[15] Hartley, R, On cone-efficiency, cone-convexity, and cone-compactness, SIAM J. appl. math., 34, 211-222, (1978) · Zbl 0379.90005
[16] Hurwicz, L, Programming in linear spaces, (), 38-102
[17] Lin, J.G, Maximal vectors and multi-objective optimization, J. optim. theory appl., 18, 41-64, (1976) · Zbl 0298.90056
[18] Luenberger, D.G, Optimization by vector space methods, (1969), Wiley New York · Zbl 0176.12701
[19] Neustadt, L.W, A general theory of extremals, J. comput. system sci., 3, 57-92, (1969) · Zbl 0167.08802
[20] Ritter, K, Optimization theory in linear spaces III: mathematical programming in partially ordered Banach spaces, Math. ann., 184, 133-154, (1970) · Zbl 0186.18203
[21] Tanino, T; Sawaragi, Y, Duality theory in multiobjective programming, J. optim. theory appl., 27, 509-529, (1979) · Zbl 0378.90100
[22] Wendell, R.E; Lee, D.N, Efficiency in multiple objective optimization problems, Math. programming, 12, 406-414, (1977) · Zbl 0362.90092
[23] Yu, P.L, Cone convexity, cone extreme points, and non-dominated solutions in decision problems with multiobjectives, J. optim. theory appl., 14, 319-377, (1974) · Zbl 0268.90057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.