×

zbMATH — the first resource for mathematics

Symmetric form of nonlinear mechanics equations and entropy growth across a shock. (English) Zbl 0474.73037

MSC:
74B20 Nonlinear elasticity
35L65 Hyperbolic conservation laws
74M20 Impact in solid mechanics
76L05 Shock waves and blast waves in fluid mechanics
PDF BibTeX Cite
Full Text: DOI
References:
[1] Boillat, G.: Sur l’existence et la recherche d’équations de conservation supplémentaires pour les systèmes hyperboliques. C. R. Acad. Sc. Paris278 A, 909-912 (1974). · Zbl 0279.35058
[2] Friedrichs, K. O., Lax, P. D.: Systems of conservation equations with a convex extension. Proc. Nat. Acad. Sci. U.S.A.68, 1686-1688 (1971). · Zbl 0229.35061
[3] Lax, P. D.: Shock waves and entropy, in: Contributions to non linear functional analysis (Zarantonello, E. H., ed.) pp. 603-634. New York: Academic Press 1971.
[4] Friedrichs, K. O.: Conservation equations and the laws of motion in classical physics. Comm. Pure Appl. Math.31, 123-131 (1978). · Zbl 0379.35002
[5] Godunov, S. K.: An interesting class of quasilinear systems. Sov. Math.2, 947-949 (1961). · Zbl 0125.06002
[6] Boillat, G.: Chocs dans les champs qui dérivent d’un principe variationnel: équation de Hamilton-Jacobi pour la fonction génératrice. C.R. Acad. Sc. Paris283A, 539-542 (1976). · Zbl 0335.35068
[7] Fusco, D.: Alcune considerazioni sulle onde di urto in fluidodinamica (to be published). · Zbl 0435.76042
[8] Boillat, G.: Sur une fonction croissante comme l’entropie et génératrice de chocs dans les systèmes hyperboliques. C. R. Acad. Sc. Paris283A, 409-412 (1976). · Zbl 0336.35071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.