×

zbMATH — the first resource for mathematics

Petri nets and regular languages. (English) Zbl 0473.68057

MSC:
68Q85 Models and methods for concurrent and distributed computing (process algebras, bisimulation, transition nets, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Baker, B.; Book, R., Reversal-bounded multipushdown machines, J. comput. system sci., 8, 315-332, (1974) · Zbl 0309.68043
[2] Crespi-Reghizzi, S.; Mandrioli, D., Petri nets and szilard languages, Inform. contr., 33, 177-192, (1977) · Zbl 0354.68098
[3] Genrich, H.J.; Lautenbach, K.; Thiagarajan, P.S., Elements of general net theory, (), 23-163 · Zbl 0441.68064
[4] Ginzburg, A.; Yoeli, M., Vector addition systems and regular languages, J. comput. system sci., 20, 277-284, (1980) · Zbl 0446.68043
[5] Greibach, S.A., An infinite hierarchy of context-free languages, J. assoc. comput. Mach., 16, 91-106, (1969) · Zbl 0182.02002
[6] Hack, M., Decidability questions for Petri nets, ()
[7] Hack, M., Petri net languages, ()
[8] Jantzen, M., On the hierarchy of Petri net languages, RAIRO inform. théor., 13, 19-30, (1979) · Zbl 0404.68076
[9] Jantzen, M.; Valk, R., Formal properties of place/transition nets, (), 166-212
[10] Karp, R.M.; Miller, R.E., Parallel program schemata, J. comput. system sci., 3, 4, 167-195, (1969) · Zbl 0198.32603
[11] Minsky, M., Computation: finite and infinite machines, (1967), Prentice-Hall Englewood Cliffs, N. J · Zbl 0195.02402
[12] Peterson, J.L., Computation sequence set, J. comput. system sci., 13, 1-24, (1976) · Zbl 0354.68100
[13] Rabin, M.O., Decidability of second order theories and automata on infinite trees, Trans. amer. soc., 141, 1-35, (1969) · Zbl 0221.02031
[14] Rackoff, C., The covering and boundedness problems for vector addition systems, Theoret. comput. sci., 6, 223-231, (1978) · Zbl 0368.68054
[15] Valk, R.; Vidal-Naquet, G., On the rationality of Petri net languages, (), 319-328
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.