×

zbMATH — the first resource for mathematics

V. A. Steklov’s problem in the theory of orthogonal polynomials. (English) Zbl 0473.42016

MSC:
42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] S. A. Agakhanov and G. I. Natanson, ”The approximation of functions by Fourier-Jacobi sums,” Dokl. Akad. Nauk SSSR,166, No. 1, 9–10 (1966). · Zbl 0154.31303
[2] S. A. Agakhanov and G. I. Natanson, ”The Lebesgue function of Fourier-Jacobi sums,” Vestn. Leningr. Gos. Univ.,1, No. 1, 11–23 (1968). · Zbl 0167.05801
[3] S. A. Agakhanov and G. I. Natanson, ”The deviation of the Fourier-Jacobi sums at a boundary point of the orthogonality interval,” Vestn. Leningr. Gos. Univ.,7, No. 2, 15–27 (1968). · Zbl 0164.37201
[4] G. Alexits, Convergence Problems of Orthogonal Series, Pergamon Press, New York (1962). · Zbl 0114.27104
[5] S. N. Andrianov, ”The equiconvergence and the uniqueness sets of orthogonal polynomials,” Izv. Kazan. Fiz.-Mat. Obshch.,13, No. 3, 51–92 (1945).
[6] N. I. Akhiezer, ”On polynomials which are orthogonal on an arc of a circumference,” Dokl. Akad. Nauk SSSR,130, No. 2, 247–250 (1960).
[7] N. I. Akhiezer, ”On polynomials orthogonal on several intervals,” Dokl. Akad. Nauk SSSR,134, No. 1, 9–12 (1960). · Zbl 0101.29205
[8] N. I. Akhiezer, ”The continual analog of polynomials which are orthogonal on an arc of a circumference,” Dokl. Akad. Nauk SSSR,141, No. 4, 769–772 (1961).
[9] N. I. Akhiezer and Yu. Ya. Tomchuk, ”On the theory of polynomials orthogonal on several intervals,” Dokl. Akad. Nauk SSSR,138, No. 4, 743–746 (1961). · Zbl 0109.29601
[10] V. M. Badkov, ”On the approximation of functions by Fourier-Jacobi series,” Dokl. Akad. Nauk SSSR,167, No. 4, 731–734 (1966).
[11] V. M. Badkov, ”The approximation of functions by the partial sums of Fourier series in generalized Jacobi polynomials,” Mat. Zametki,3, No. 6, 671–682 (1968). · Zbl 0165.39201
[12] V. M. Badkov, ”Estimates of the Lebesgue function and the remainder of the Fourier-Jacobi series,” Sib. Mat. Zh.,9, No. 3, 1263–1283 (1968). · Zbl 0203.07102 · doi:10.1007/BF02196447
[13] V. M. Badkov, ”The equiconvergence of Fourier series in orthogonal polynomials,” Mat. Zametki,5, No. 3, 285–295 (1969).
[14] V. M. Badkov, ”The approximation of functions by the partial sums of Fourier series in polynomials orthogonal on an interval,” Mat. Zametki,8, No. 4, 431–441 (1970).
[15] V. M. Badkov, ”On the boundedness in the mean of orthonormal polynomials,” Mat. Zametki,13, No. 5, 759–770 (1973).
[16] V. M. Badkov, ”The mean convergence of Fourier series in orthogonal polynomials,” Mat. Zametki,14, No. 2, 161–172 (1973).
[17] V. M. Badkov, ”Mean and almost everywhere convergence of Fourier series in polynomials orthogonal on an interval,” Mat. Sb.,95, No. 2, 229–262 (1974). · Zbl 0311.42006
[18] N. S. Baiguzov, ”Approximate differentiation with the aid of the Lagrange and Hermite interpolational polynomials,” Dokl. Akad. Nauk SSSR,182, No. 1, 16–19 (1968).
[19] N. S. Baiguzov, ”An extremal problem related with differentiation with the aid of interpolational polynomials,” Mat. Zap. Ural. Univ.,6, No. 4, 3–16 (1968).
[20] N. S. Baiguzov, ”Some estimates for the derivatives of algebraic polynomials and their application to approximate differentiation,” Mat. Zametki,6, No. 2, 183–195 (1969).
[21] N. S. Baiguzov, ”On the order of approximation of the derivative by the differentiated Lagrange interpolational polynomials,” Tr. Inst. Mat. Mekh. Akad. Nauk Kazakh SSR,1, 203–210 (1970).
[22] G. I. Barkov, ”On certain systems of polynomials, orthogonal on two symmetric intervals,” Izv. Vyssh. Uchebn. Zaved., Mat.,4, 3–16 (1960). · Zbl 0101.29301
[23] G. I. Barkov, ”On the properties of certain systems of orthogonal polynomials,” Uch. Zap. Chelyab. Gos. Pedagog. Inst.,5, No. 3, 304–312 (1960).
[24] G. I. Barkov, ”On the problem of the comparison of the boundedness of two orthogonal normalized systems of polynomials,” Tr. Chelyab. Gos. Pedagog. Inst.,2, 5–12 (1964).
[25] S. N. Bernshtein, ”On polynomials orthogonal on a finite interval,” Collected Works, Vol. 2, Izd. Akad. Nauk SSSR, Moscow (1954), pp. 7–106.
[26] B. M. Gagaev, ”Certain properties of the expansion of functions in series of orthogonal polynomials,” Uch. Zap. Gos. Pedagog. Inst., Kazan,2, 32–40 (1940).
[27] B. M. Gagaev, ”The work of Kazakh mathematicians in orthogonal systems,” Usp. Mat. Nauk,12, No. 4, 251–262 (1957). · Zbl 0078.05702
[28] B. M. Gagaev, ”The work of Kazakh mathematicians in orthogonal systems (1957–1959),” in: Studies in the Modern Problems of the Constructive Theory of Functions [in Russian], Fizmatgiz, Moscow (1961), pp. 168–178.
[29] B. M. Gagaev, ”Some properties of orthogonal polynomials satisfying higher-order differential equations,” in: Studies in the Modern Problems of the Constructive Theory of Functions [in Russian], Akad. Nauk Azerbaidzhan SSR, Baku (1965), pp. 419–424.
[30] Ya. L. Geronimus, ”Generalized orthogonal polynomials and the Christoffel-Darboux formula,” Dokl. Akad. Nauk SSSR,26, No. 9, 843–846 (1940).
[31] Ya. L. Geronimus, ”On certain properties of generalized orthogonal polynomials,” Dokl. Akad. Nauk SSSR,29, No. 1, 5–8 (1940).
[32] Ya. L. Geronimus, ”Polynomials which are orthogonal on a circle and their applications,” Zap. Inst. Mat. Mekh. Kharkov. Mat. Obshch.,19, No. 4, 35–120 (1948).
[33] Ya. L. Geronimus, Orthogonal Polynomials, Plenum Publ. (1961).
[34] Ya. L. Geronimus, ”On certain extremal problems in the space L \(\sigma\) \(\rho\) ,” Mat. Sb.,31, No. 1, 3–26 (1952).
[35] Ya. L. Geronimus, Polynomials Orthogonal on a Circle and Interval, Pergamon Press, New York (1960). · Zbl 0093.26503
[36] Ya. L. Geronimus, ”On certain fundamental inequalities in the theory of orthogonal polynomials,” Dokl. Akad. Nauk SSSR,140, No. 5, 1002–1004 (1961).
[37] Ya. L. Geronimus, ”On V. A. Steklov’s assumptions,” Dokl. Akad. Nauk SSSR,142, No. 3, 507–509 (1962).
[38] Ya. L. Geronimus, Complements to Szegö’s Book [118].
[39] Ya. L. Geronimus, ”The relation between the order of growth of orthonormal polynomials and their weight functions,” Mat. Sb.,61, No. 1, 65–79 (1963).
[40] Ya. L. Geronimus, ”On a conjecture of V. A. Steklov,” Uch. Zap. Kharkov. Univ., Zap. Mekh.-Mat. Fak-ta Kharkov. Mat. O-va,29, 79–88 (1963).
[41] Ya. L. Geronimus, ”On certain limiting properties of orthogonal polynomials,” Dokl. Akad. Nauk SSSR,165, No. 1, 19–20 (1965).
[42] Ya. L. Geronimus, ”On certain limiting properties of orthogonal polynomials,” Vestn. Kharkov. Univ. Ser. Mekh. Mat., No. 14, 40–50 (1966).
[43] Ya. L. Geronimus, ”On a problem of G. Szegö, M. Kac, G. Baxter, and G. Hirschman,” Izv. Akad. Nauk SSSR, Ser. Mat.,31, No. 2, 289–304 (1967).
[44] Ya. L. Geronimus, ”On a problem of S. N. Bernshtein,” Dokl. Akad. Nauk SSSR,229, No. 3, 538–541 (1976).
[45] Ya. L. Geronimus and B. L. Golinskii, ”Asymptotic formulas for orthogonal polynomials,” Teor. Funktsii, Funkts. Analiz Prilozh.,1, 141–163 (1965).
[46] I. M. Glazman, Direct Methods in the Qualitative Spectral Analysis of Singular Differential Operators [in Russian], Fizmatgiz, Moscow (1963). · Zbl 0143.36504
[47] B. L. Golinskii, ”On certain limiting relations in the theory of orthogonal polynomials,” Izv. Vyssh. Uchebn. Zaved., Mat.,2, 29–38 (1958).
[48] B. L. Golinskii, ”On local limiting relations and asymptotic formulas for polynomials orthogonal on the unit circumference,” Mat. Sb.,64, No. 3, 301–326 (1964).
[49] B. L. Golinskii, ”On local and pointwise limiting relations and asymptotic formulas for polynomials orthonormal on the unit circumference,” in: Studies in the Modern Problems of the Constructive Function Theory [in Russian], Izd. Akad. Nauk Azerbaidzhan SSR, Baku (1965), pp. 306–312.
[50] B. L. Golinskii, ”On certain estimates for the Christoffel – Darboux kernel and the moduli of orthogonal polynomials,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 1, 30–42 (1966).
[51] B. L. Golinskii, ”On almost everywhere limiting relations on the unit circumference for polynomials orthogonal on it,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 5, 49–58 (1966).
[52] B. L. Golinskii, ”On the speed of convergence of sequences of orthogonal polynomials to their limiting function,” Ukr. Mat. Zh.,19, No. 4, 11–28 (1967). · Zbl 0208.33901 · doi:10.1007/BF01090399
[53] B. L. Golinskii, ”The localization principle and limiting relations for polynomials orthogonal on the unit circumference,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 10, 42–52 (1968).
[54] B. L. Golinskii, ”A refinement of the asymptotic formulas of G. Szegö and S. N. Bernshtein,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 11, 70–82 (1968).
[55] B. L. Golinskii, ”On uniform limiting local relations for orthogonal polynomials,” Teor. Funktsii, Funkts. Analiz Prllozhen., No. 9, 103–117 (1969).
[56] B. L. Golinskii, ”On the growth of the polynomial kernels of G. Szegö,” Teor. Funktsii, Funkts. Analiz Prilozhen., No. 10, 36–47 (1970).
[57] B. L. Golinskii, ”Studies in the theory of polynomials orthogonal on the unit circumference,” Doctoral Dissertation, Leningrad (1970).
[58] B. L. Golinskii, ”On V. A. Steklov’s problem in the theory of orthogonal polynomials,” Mat. Zametki,15, No. 1, 21–32 (1974). · Zbl 0302.42014
[59] B. L. Golinskii, ”On two fundamental conditions for the asymptotic representation of polynomials orthonormal on the unit circumference,” Mat. Zametki,15, No. 6, 847–855 (1974). · Zbl 0299.42011
[60] B. L. Golinskii, ”On a limiting relation in the theory of the Szegö orthogonal polynomials,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 4, 14–23 (1975). · Zbl 0318.42021
[61] B. L. Golinskii, ”The localization principle in the theory of the orthogonal polynomials of V. A. Steklov,” Izv. Akad. Nauk SSSR, Ser. Mat.,39, No. 2, 403–412 (1975). · Zbl 0318.42020
[62] B. L. Golinskii, ”The asymptotic representation at a point of the derivative of orthonormal polynomials,” Mat. Zametki,19, No. 5, 659–672 (1976). · Zbl 0348.42010
[63] B. L. Golinskii, ”Asymptotic formulas for the derivatives of orthogonal polynomials,” Izv. Akad. Nauk Arm. SSR, Mat.,11, No. 1, 56–81 (1976).
[64] U. Grenander and G. Szegö, Toeplitz Forms and Their Applications, University of California Press, Berkeley-Los Angeles (1958). · Zbl 0080.09501
[65] Z. S. Grinshpun, ”On the Fejer-Shohat problem,” Vestn. Leningr. Gos. Univ., Ser. Mat.,13, No. 3, 125–128 (1966). · Zbl 0178.06902
[66] Z. S. Grinshpun, ”On certain classes of orthogonal polynomials,” Uch. Zap. Kabard.-Balkar. Univ.,30, 21–23 (1966).
[67] Z. S. Grinshpun, ”On a class of orthogonal polynomials,” Vestn. Leningr. Gos. Univ., Ser. Mat.,19, No. 4, 147–149 (1966).
[68] Z. S. Grinshpun, ”On the effect of the singularities of the weight function exterior to the orthogonality interval on the distribution of the zeros of orthogonal polynomials,” Izv. Akad. Nauk Kaz. SSR, Ser. Fiz.-Mat.,1, 78–84 (1967).
[69] I. K. Daugavet, ”On an approximation process connected with the Legendre polynomials,” in: Methods of Computation [in Russian], Vol. 2, Leningrad Univ. (1963), pp. 29–38.
[70] D. Jackson, Fourier Series and Orthogonal Polynomials, The Mathematical Association of America (1941). · Zbl 0060.16910
[71] A. S. Zinov’ev, ”On the convergence of Fourier-Chebyshev expansions at the Lebesgue points,” Teor. Funktsii, Funkts. Analiz Prilozhen.,9, 58–64 (1969). · Zbl 0229.42013
[72] A. S. Zinov’ev, ”On the properties of certain systems of orthogonal polynomials,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 9, 30–36 (1969).
[73] A. S. Zinov’ev, ”On certain localization theorems,” Ukr. Mat. Zh.,3, 364–369 (1970).
[74] A. S. Zinov’ev, ”The convergence of the Fourier-Chebyshev process relative to polynomials orthogonal on a finite interval,” Candidate’s Dissertion, Kalinin (1972).
[75] A. V. Zorshchikov, ”On estimates of the remainder of the Fourier-Jacobi series,” Mat. Zap. Ural. Univ.,5, No. 4, 23–32 (1966).
[76] A. V. Zorshchikov, ”On the uniform convergence of Fourier series in Jacobi polynomials,” Dokl. Akad. Nauk SSSR,176, No. 1, 35–38 (1967). · Zbl 0182.39605
[77] A. V. Zorshchikov, ”On the approximation of functions by Fourier-Jacobi series,” Mat. Zap. Ural. Gos. Univ.,6, No. 2, 32–39 (1967). · Zbl 0182.39605
[78] A. V. Zorshchikov, ”On the uniform convergence of weighted Fourier-Jacobi series,” in: Physicomathematical Sciences [in Russian], Yaroslavl (1973), pp. 28–32.
[79] G. I. Ignatsius, Vladimir Andreevich Steklov [in Russian], Nauka, Moscow (1967).
[80] S. Kaczmarz and H. Steinhaus, Theorie der Orthogonalreihen, 2nd ed., Chelsea, New York (1951). · Zbl 0045.33601
[81] A. I. Kovalenko, ”On the convergence of orthogonal polynomials at a point,” Sib. Mat. Zh.,10, No. 4, 860–871 (1969).
[82] V. P. Konoplev, ”On polynomials orthogonal with weight functions which vanish or become equal to infinity at isolated points of the orthogonality interval,” Dokl. Akad. Nauk SSSR,141, No. 4, 781–784 (1961).
[83] V. P. Konoplev, ”On polynomials orthogonal with weight functions which vanish or become equal to infinity at isolated points of the orthogonality interval,” Uch. Zap. Sarat. Pedagog. Inst., Mat., 70–75 (1962).
[84] V. P. Konoplev, ”On a problem of V. A. Steklov,” Uch. Zap. Sarat. Pedagog. Inst., Mat., 76–82 (1962).
[85] V. P. Konoplev, ”The differential-recursive equations of systems of orthogonal polynomials in the case of general weight functions with singularities of the algebraic type,” Volzhsk. Mat. Sb.,2, 70–73 (1964).
[86] V. P. Konoplev, ”The method of standard equations for obtaining the asymptotic representations of the solutions of linear second-order differential equations,” Volzhsk. Mat. Sb.,2, 66–68 (1964).
[87] V. P. Konoplev, ”On the asymptotic behavior of orthogonal polynomials at the one-sided singular points of the weight functions (algebraic singularities),” Dokl. Akad. Nauk SSSR,160, No. 5, 997–1000 (1965).
[88] V. P. Konoplev, ”On the asymptotic behavior of orthonormal polynomials at the one-sided singular points of the weight functions (algebraic singularities),” Volzhsk. Mat. Sb.,4, 93–102 (1966).
[89] V. P. Konoplev, ”The characteristic properties of systems of orthogonal polynomials,” Uch. Zap. Sarat. Pedagog. Inst. Nekotorye Vop. Mat. Anal.,46, 18–26 (1968).
[90] V. P. Konoplev, ”Polynomials orthogonal with weight functions having zeros of exponential order,” Uch. Zap. Saratov. Pedagog. Inst. Nekotorye Vop. Mat. Anal.,46, 27–29 (1968).
[91] V. P. Konoplev, ”The method of standard equations,” in: Ordinary Differential Equations and Fourier Series [in Russian], Vol. 2, Saratov. Univ. (1971), pp. 3–15.
[92] V. P. Konoplev, ”On the expansion of summable functions in Fourier series of orthogonal polynomials,” in: Differential Equations and Computational Mathematics [in Russian], No. 1, Saratov. Univ. (1972), pp. 3–8.
[93] P. P. Korovkin, ”The asymptotic expression of polynomials orthogonal on a rectifiable contour,” Dokl. Akad. Nauk SSSR,27, No. 3, 521–524 (1940).
[94] P. P. Korovkin, ”On polynomials orthogonal along a rectifiable contour under the presence of a weight,” Mat. Sb.,9, No. 3, 469–488 (1941).
[95] P. P. Korovkin, ”The capacity of sets and polynomials minimizing an integral,” Uch. Zap. Kalinin. Pedagog. Inst.,5, 34–52 (1958).
[96] P. P. Korovkin, ”The asymptotic representation of polynomials minimizing an integral,” in: Studies in the Modern Problems of the Constructive Theory of Functions [in Russian], Fizmatgiz, Moscow (1961), pp. 273–276.
[97] M. G. Krein, ”The continual analogies of the conjectures on polynomials orthogonal on the unit circumference,” Dokl. Akad. Nauk SSSR,105, No. 4, 637–640 (1955).
[98] N. P. Krivonogov, ”Certain estimates for orthogonal polynomials in the case of algebraic zeros of the weight functions,” in: The Applications of Functional Analysis in the Theory of Approximations [in Russian], Vol. 3, Kalinin (1974), pp. 44–50.
[99] N. P. Krivonogov, ”The mean convergence of Fourier series in polynomials orthonormal along the unit circumference,” in: The Applications of Functional Analysis in the Theory of Approximations [in Russian], Vol. 5, Kalinin (1975), pp. 64–69.
[100] N. P. Krivonogov, ”Fourier series in polynomials orthonormal along a circumference,” in: The Applications of Functional Analysis in the Theory of Approximations [in Russian], Vol. 6, Kalinin (1975), pp. 50–58.
[101] A. L. Kuz’mina, ”The asymptotic representation of polynomials orthogonal along a piecewise analytic curve,” in: Functional Analysis and the Theory of Functions [in Russian], Vol. 1 (1963), pp. 42–50.
[102] K. V. Lashchenov, ”On the problem of the interpolation with respect to the roots of the orthogonal polynomials of the weight (12)p|x|q,” Uch. Zap. Leningr. Pedagog. Inst.,89, 191–206 (1953).
[103] K. V. Lashchenov, ”On the convergence of the Lagrange interpolation process with respect to the nodes which are the roots of the orthogonal polynomials of the weight (12)p|x{q and the estimates of the corresponding Lebesgue constants,” Uch. Zap. Leningr. Pedagog. Inst.,302, 220–228 (1967).
[104] K. V. Lashchenov, ”On a class of Bernshtein-Szegö orthogonal polynomials,” Uch. Zap. Leningr. Pedagog. Inst.,464, 218–235 (1970).
[105] K. V. Lashchenov, ”On the problem of the expansion of functions in the orthogonal polynomials of the weight (1x2)(12)1/2,” in: Theory of Functions and Functional Analysis [in Russian], Leningrad (1975), pp. 75–84.
[106] K. V. Lashchenov, ”On the estimates of a class of orthogonal polynomials and their corresponding Lebesgue functions,” in: Functional Analysis, No. 6, Ul’yanovsk (1976), pp. 84–89.
[107] V. P. Motornyi, ”On the mean convergence of Fourier series in Legendre polynomials,” Izv. Akad. Nauk SSSR, Ser. Mat.,37, No. 1, 135–147 (1973).
[108] I. P. Natanson, Constructive Function Theory, Ungar, New York (1964–1965). · Zbl 0133.31101
[109] G. P. Nevai, ”Certain properties of polynomials orthonormal with the weight (1+x2k)\(\alpha\)exp(k) and their applications to the theory of approximations,” Dokl. Akad. Nauk SSSR,211, No. 4, 784–786 (1973).
[110] A. F. Nikiforov and V. B. Uvarov, The Foundation of the Theory of Special Functions [in Russian], Nauka, Moscow (1974). · Zbl 0368.33007
[111] B. P. Osilenker, ”Growth estimates for the Lebesgue functions of linear summation methods,” Mat. Zametki,6, No. 3, 277–286 (1969).
[112] A. I. Pulatov, ”On the absolute convergence of Fourier series in orthogonal trigonometric polynomials,” Sb. Nauchn. Tr. Mekh. Inst.,50, 186–190 (1965).
[113] A. I. Pulatov, ”Problems of convergence and quadrature in the theory of orthogonal trigonometric polynomials,” Nauchn. Tr. Tashkentsk. Univ.,276, 77–84 (1966).
[114] S. Z. Rafal’son, ”On polynomials orthogonal with a load,” Izv. Vyssh. Uchebn. Zaved., Mat.,3, 146–154 (1964).
[115] S. Z. Rafal’son, ”On an asymptotic formula in the theory of orthogonal polynomials,” Dokl. Akad. Nauk SSSR,171, No. 4, 802–805 (1966). · Zbl 0203.07101
[116] S. Z. Rafal’son, ”On the approximation of functions by Fourier-Jacobi sums,” Izv. Vyssh. Uchebn. Zaved., Mat.,4, 54–62 (1968).
[117] S. Z. Rafal’son, ”On the approximation of functions in the mean by Fourier-Gegenbauer sums,” Mat. Zametki,3, No. 5, 587–596 (1968). · Zbl 0199.12402
[118] G. Szegö, Orthogonal Polynomials, Amer. Math. Soc., Providence (1939).
[119] E. A. Sinev, ”On the simultaneous orthogonality of polynomials and their derivatives,” Izv. Vyssh. Uchebn. Zaved., Mat.,2, 147–154 (1961).
[120] V. I. Smirnov, ”V. A. Steklov’s works on expansions in orthogonal functions,” in: Anniversary Volume of the Great October Socialist Revolution [in Russian], Vol. 1, Moscow-Leningrad (1947), pp. 186–213.
[121] V. I. Smirnov and N. A. Lebedev, Functions of a Complex Variable, Constructive Theory, MIT Press, Cambridge (1968). · Zbl 0164.37503
[122] V. A. Steklov, ”On the closure theory of a system of orthogonal functions depending on an arbitrary number of variables,” Izv. Akad. Nauk,4, 1–86 (1911).
[123] V. A. Steklov, ”On an application of the closure theory to the problem of the expansion of an arbitrary function in a series of Chebyshev polynomials,” Izv. Akad. Nauk, No. 7, 87–92 (1913).
[124] V. A. Steklov, ”On the approximate calculation of definite integrals with the aid of mechanical quadrature,” Izv. Akad. Nauk,10, 169–186 (1916).
[125] V. A. Steklov, ”On the approximate calculation of definite integrals with the aid of mechanical quadrature,” Izv. Akad. Nauk,10, 829–850 (1916).
[126] V. A. Steklov, On the Asymptotic Expression of Certain Functions Defined by a Linear Second-Order Differential Equation and Its Application to the Problem of the Expansion of an Arbitrary Function in a Series of These Functions [in Russian], Kharkov. Univ. (1956).
[127] S. B. Stechkin, ”An estimate of the remainder of the Taylor series for certain classes of analytic functions,” Izv. Akad. Nauk SSSR, Ser. Mat.,17, No. 5, 461–472 (1953).
[128] P. K. Suetin, ”On polynomials orthogonal with a differential weight,” Dokl. Akad. Nauk SSSR,106, No. 5, 788–791 (1956). · Zbl 0070.06205
[129] P. K. Suetin, ”On the representation of analytic functions by series of orthogonal polynomials,” Dokl. Akad. Nauk SSSR,109, No. 1, 36–39 (1956). · Zbl 0074.04902
[130] P. K. Suetin, ”On polynomials orthogonal along a smooth contour with a differential weight,” Dokl. Akad. Nauk SSSR,114, No. 3, 498–501 (1957). · Zbl 0081.29502
[131] P. K. Suetin, ”On the order of the approximation of analytic functions by partial sums of series in orthogonal polynomials,” Izv. Akad. Nauk Arm. SSR, Ser. Fiz.-Mat.,15, No. 2, 81–88 (1962).
[132] P. K. Suetin, ”On the representation of continuous and differentiable functions by Fourier series in Legendre polynomials,” Dokl. Akad. Nauk SSSR,158, No. 6, 1275–1277 (1964).
[133] P. K. Suetin, ”Certain asymptotic properties of orthogonal polynomials in the complex domain,” Dokl. Akad. Nauk SSSR,164, No. 2, 285–288 (1965).
[134] P. K. Suetin, ”The fundamental properties of polynomials orthogonal along a contour,” Usp. Mat. Nauk,21, No. 2, 41–88 (1966).
[135] P. K. Suetin, ”The asymptotic properties of polynomials orthogonal along a contour,” in: Modern Problems in the Theory of Analytic Functions [in Russian], Nauka, Moscow (1966), pp. 274–277.
[136] P. K. Suetin, ”Certain estimates for polynomials orthogonal along a contour when the weight and the contour have singularities,” Sib. Mat. Zh.,8, No. 5, 1070–1078 (1967).
[137] P. K. Suetin, ”Certain inequalities for polynomials orthogonal along a contour when the weight and the contour have singularities,” in: 25th Scientific-Pedagogical Conference of Mathematical Departments of the Pedagogical Institute of the Ural Region. Abstracts of Reports and Communications, Sverdlovsk (1967), pp. 106–108.
[138] P. K. Suetin, ”Certain properties of polynomials orthogonal on an interval,” Sib. Mat. Zh.,10, No. 3, 653–670 (1969). · Zbl 0198.10301
[139] P. K. Suetin, ”Polynomials orthogonal over an area and the Bieberbach polynomials,” Tr. Mat. Inst. Akad. Nauk SSSR,100 (1971). · Zbl 0231.30038
[140] P. K. Suetin, ”Certain asymptotic and approximate properties of polynomials orthogonal along a smooth contour,” in: Collection of Papers on the Constructive Theory of Functions and the Extremum Problems of Functional Analysis [in Russian], Kalinin (1972), pp. 126–130.
[141] P. K. Suetin, ”Series of Faber polynomials and certain generalizations,” in: Modern Problems of Mathematics, Vol. 5 (Itogi Nauki i Tekhn. VINITI Akad. Nauk SSSR), Moscow (1975), pp. 73–140.
[142] P. K. Suetin, ”Polynomials orthogonal along a contour in the case of the interference of the singularities of the weight and the contour,” in: All-Union Symposium on the Theory of Approximation of Functions in the Complex Domain (Abstracts of Reports), Ufa (1976), pp. 79–80.
[143] P. K. Suetin, Classical Orthogonal Polynomials [in Russian], Nauka, Moscow (1976). · Zbl 0375.42005
[144] Yu. Ya. Tomchuk, ”On polynomials orthogonal on a given system of arcs of the unit circumference,” Dokl. Akad. Nauk SSSR,151, No. 1, 55–58 (1963). · Zbl 0163.30902
[145] Yu. Ya. Tomchuk, ”Orthogonal polynomials on a system of intervals of the real axis,” Uch. Zap. Kharkov. Univ., Zap. Mekh.-Mat. Fak-ta Kharkov. Mat. O-va,29, 93–128 (1963).
[146] V. B. Uvarov, ”The connection between systems of polynomials orthogonal with respect to different distribution functions,” Zh. Vychisl. Mat. Mat. Fiz.,9, No. 6, 1253–1262 (1969). · Zbl 0191.36702
[147] N. P. Fadeev, ”On the weights of certain systems orthogonal polynomials,” Uch. Zap. Kazan. Gos. Pedagog. Inst., No. 83, 134–143 (1970).
[148] N. P. Fadeev, ”On polynomials orthogonal on several intervals,” Uch. Zap. Kazan. Gos. Pedagog. Inst., No. 83, 151–162 (1970).
[149] N. P. Fadeev, ”On the completeness of a system of orthogonal polynomials,” Volzh. Mat. Sb., No. 13, 106–109 (1972).
[150] N. P. Fadeev, ”On a class of Bernshtein-Szegö polynomials,” Temat. Sb. Mordovskii Univ., No. 108, 54–60 (1974).
[151] N. P. Fadeev, ”On the differential equations for certain orthogonal polynomials,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 5, 99–103 (1976).
[152] T. Frei, ”On the asymptotic behavior of orthogonal sequences of polynomials,” Mat. Sb.,49, No. 2, 133–180 (1959).
[153] V. P. Tsvetkov, ”On a class of orthogonal polynomials,” Collection of papers by the aspirants of Kazan University, Exact Sciences, Mathematics (1970), pp. 167–177.
[154] V. P. Tsvetkov, ”An estimate of the upper bound of Fejer sums with respect to a system of orthogonal polynomials,” Collection of papers by the aspirants of Kazan University, Exact Sciences, Mathematics (1971), pp. 29–41.
[155] V. P. Tsvetkov, ”On the problem of the estimate of the upper bound of arithmetic mean Fourier sums with respect to Legendre polynomials,” Collection of papers by the aspirants of Kazan University, Exact Sciences, Mathematics (1971), pp. 42–49.
[156] V. P. Tsvetkov, ”An estimate of the upper bound of Fejer sums with respect to Chebyshev polynomials of the second kind,” Volzh. Mat. Sb., No. 13, 134–143 (1972).
[157] V. P. Tsvetkov, ”An integral representation of a class of orthogonal polynomials,” in: ”Expansions in Orthogonal Polynomials,” Kazan. Univ., Kazan (1973), pp. 94–96.
[158] A. A. Tsygankov, ”On the comparison of the growth of systems of orthogonal polynomials,” Mat. Zap. Ural. Univ.,6, No. 2, 148–166 (1968).
[159] A. A. Tsygankov, ”Harmonic polynomials which are orthogonal on a plane curve,” Dokl. Akad. Nauk SSSR,197, No. 4, 794–797 (1971).
[160] A. A. Tsygankov, ”Certain estimates and asymptotic formulas for superorthogonal polynomials,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 7, 100–106 (1972).
[161] A. A. Tsygankov, ”Properties of certain systems of linearly independent functions,” Mat. Zap. Ural. Univ.,7, No. 4, 126–132 (1970).
[162] A. A. Tsygankov, ”On polynomials which are orthogonal on plane sets,” Mat. Zap. Ural. Univ.,8, No. 2, 150–164 (1972). · Zbl 0322.42009
[163] A. A. Tsygankov, ”The simultaneous orthogonality of polynomials along a contour and over an area,” Dokl. Akad. Nauk SSSR,216, No. 1, 46–48 (1974).
[164] A. A. Tsygankov, ”On the approximation of functions on a plane curve,” Mat. Zap. Ural. Univ.,8, No. 4, 109–123 (1974). · Zbl 0302.41004
[165] A. A. Tsygankov, ”On the comparison of the majorants of systems of polynomials in two variables, orthogonal along a plane curve,” Nauchn. Tr. Sverdl. Gos. Pedagog. Inst., No. 219, 227–235 (1974).
[166] R. Askey, ”On some problems posed by Karlin and Szegö concerning orthogonal polynomials,” Boll. Unione Mat. Ital.,20, No. 1, 125–127 (1965). · Zbl 0127.03102
[167] R. Askey, ”Mean convergence of orthogonal series and Lagrange interpolation,” Acta Math. Acad. Sci. Hungar.,23, Nos. 1–2, 71–85 (1972). · Zbl 0253.41003 · doi:10.1007/BF01889904
[168] W. Barrett, ”An asymptotic formula relating to orthogonal polynomials,” J. London Math. Soc.,6, No. 4, 701–707 (1973). · Zbl 0258.33012 · doi:10.1112/jlms/s2-6.4.701
[169] G. Baxter, ”A convergence equivalence related to polynomials orthogonal on the unit circle,” Trans. Am. Math. Soc.,99, No. 3, 471–478 (1961). · Zbl 0116.35705 · doi:10.1090/S0002-9947-1961-0126126-8
[170] E. A. Cohen, Jr., ”Zero distribution and behavior of orthogonal polynomials in the Sobolev space W1,2[, 1],” SIAM J. Math. Anal.,6, No. 1, 105–116 (1975). · Zbl 0272.42013 · doi:10.1137/0506011
[171] D. Dickinson and P. Barrucand, ”Une transformation générale pour les polynômes orthogonaux,” C. R. Acad. Sci., Paris,268, No. 24, A1469-A1472 (1969). · Zbl 0174.11002
[172] G. Fauth, ”Über die Approximation Analytischer Funktionen durch Teilsummen ihrer Szegö Entwicklung,” Mitt. Mathem. Semin. Giessen,67 (1966). · Zbl 0145.30302
[173] G. Freud, ”Uber die starke (C, 1)-Summierbarkeit von orthogonalen Polynomreihen,” Acta Math. Acad. Sci. Hungar.,3, 83–88 (1952). · Zbl 0047.30404 · doi:10.1007/BF02146074
[174] G. Freud, ”Eine Bemerkung zur asymptotischen Darstellung von Orthogonalpolynomen,” Math. Scand.,5, No. 2, 285–290 (1957). · Zbl 0081.06002 · doi:10.7146/math.scand.a-10507
[175] G. Freud, Orthogonal Polynomials, Akad. Kiado, Budapest (1971).
[176] G. Freud, ”On a class of orthogonal polynomials,” in: Konstruktivnaya Teoriya Funktsii, Tr. Mezhdunar. Konf. Zolotye Peski (Varna), 1970, Sofia (1972), pp. 177–182.
[177] G. Freud, ”On expansions in orthogonal polynomials,” Stud. Sci. Math. Hungar.,6, Nos. 3–4, 367–374 (1971). · Zbl 0265.42010
[178] T. Frey, ”On the boundedness of orthogonal polynomials. I,” Magyar Tud. Akad. Mat. Fiz. Tud. Oszt. Közl.,8, No. 1, 67–87 (1958).
[179] T. Frey, ”Sur un théorème de Korous,” Publ. Math.,7, No. 1–4, 320–352 (1960). · Zbl 0097.05003
[180] D. Gaier, Konstruktive Methoden der konformen Abbildung, Springer-Verlag, Berlin (1964). · Zbl 0132.36702
[181] U. Grenander and M. Rosenblatt, ”An extension of a theorem of Szegö and its application to the study of stochastic processes,” Trans. Am. Math. Soc.,76, No. 1, 112–126 (1954). · Zbl 0059.11804
[182] Ch. Horup, ”An asymptotic formula for the derivatives of orthogonal polynomials on the unit circle,” Math. Scand.,20, 32–41 (1967). · Zbl 0181.34902 · doi:10.7146/math.scand.a-10816
[183] M. Keldisch, ”Sur l’approximation en moyenne quadratique des fonctions analytiques,” Mat. Sb.,5, No. 2, 391–402 (1939).
[184] H. Koch, ”Über das Nichtverschwinden einer Determinante nebst Bemerkungen über Systeme unendlich vieles linearer Gleichungen,” Jahresber. Dtsch. Mat. Ver.,22, 285–291 (1913). · JFM 44.0403.01
[185] J. Korous, ”O rozvoii funkci jedné reálné proménné v radi jistých orthogonalnich polynomi,” Rozpravy Česke Ak.,48, 1–12 (1938).
[186] P. Lesky, ”Orthogonale Polynome als Lösungen Heunscher Differentialgleichungen,” Sitzungsber. Österr. Akad. Wiss. Math.-naturwiss. Kl., Abt. II,173, Nos. 9–10, 259–267 (1965). · Zbl 0136.05704 · doi:10.1007/978-3-662-25223-9_1
[187] G. P. Nevai, ”Mean convergence of Lagrange interpolation,” J. Approximation Theory,18, No. 4, 363–377 (1976). · Zbl 0426.41001 · doi:10.1016/0021-9045(76)90008-3
[188] A. Ostrowski, ”Sur la détermination des bornes inférieures pour une classe des déterminants,” Bull. Sci. Math.,61, 19–32 (1937). · JFM 63.0034.05
[189] A. Ostrowski, ”Determinanten mit überwiegender Hauptdiagonale und die absolute Konvergenz von linearen Iterationsprozessen,” Comment. Math. Helv.,30, No. 3, 175–210 (1956). · Zbl 0072.13803 · doi:10.1007/BF02564340
[190] J. Prasad, ”Remarks on a theorem of P. K. Suetin,” Czechoslovak Math. J.,21, No. 3, 349–354 (1971).
[191] J. J. Price, ”On a property of orthogonal polynomials,” Michigan Math. J.,10, No. 2, 151–156 (1963). · Zbl 0111.06203 · doi:10.1307/mmj/1028998866
[192] P. S. Rosenbloom and S. E. Warschawski, ”Approximation by polynomials,” in: Lect. Funct. Complex Variable, Univ. Michigan Press, Ann Arbor (1955), pp. 287–302. · Zbl 0067.04804
[193] R. B. Saxena, ”Expansion of continuous differentiable functions in Fourier-Legendre series,” Canad. J. Math.,19, No. 4, 823–827 (1967). · Zbl 0186.12204 · doi:10.4153/CJM-1967-076-1
[194] J. A. Shohat, ”On the development of continuous functions in series of Tchebycheff polynomials,” Trans. Am. Math. Soc.,27, 537–550 (1925). · JFM 51.0228.02 · doi:10.1090/S0002-9947-1925-1501326-9
[195] J. A. Shohat, Théorie Générale des Polynômes Orthogonaux de Tchebichef, Mémorial des Sciences Mathématiques, Vol. 66, Paris (1934). · Zbl 0009.24604
[196] J. A. Shohat, E. Hille, and J. L. Walsh, A Bibliography on Orthogonal Polynomials, Washington (1940). · Zbl 0025.04103
[197] H. M. Srivastava and J. L. Brenner, ”Bounds for Jacobi and related polynomials derivable by matrix methods,” J. Approx. Theory,12, No. 4, 372–377 (1974). · Zbl 0281.33017 · doi:10.1016/0021-9045(74)90080-X
[198] W. A. Stekloff, ”Les méthodes générales pour résoudre les problèmes fondamentaux de la physique mathématique,” Ann. Fac. Sci. Toulouse,2, 207–272 (1900). · JFM 31.0731.01 · doi:10.5802/afst.170
[199] W. A. Stekloff, ”Mémoire sur les fonctions harmoniques de M. H. Poincaré,” Ann. Fac. Sci. Toulouse,2, 273–303 (1900). · JFM 31.0733.01 · doi:10.5802/afst.171
[200] W. A. Stekloff, ”Sur le développement d’une fonction donnée en séries procédant suivant les polynômes de Tchebycheff et, en particulier, suivant les polynômes de Jacobi,” J. Reine Angew. Math.,125, 207–236 (1902).
[201] W. A. Stekloff, ”Sur une propriété remarquable de plusieurs développements, souvent employés dans l’analyse,” C. R. Acad. Sci. Paris,136, 876–878 (1903). · JFM 34.0427.01
[202] W. A. Stekloff, ”Sur le développement d’une fonction donnée en séries procédant suivant les polynômes de Jacobi,” C. R. Acad. Sci. Paris,136, 1230–1232 (1903). · JFM 34.0428.01
[203] W. A. Stekloff, ”Sur certaines égalités générales communes à plusieurs séries de fonctions souvent employées dans l’analyse,” Zap. Akad. Nauk Fiz.-Mat. Otd.,15, No. 7, 1–33 (1904).
[204] W. A. Stekloff, ”Sur les expressions asymptotiques de certaines fonctions, définies par les équations differentielles linéaires du second ordre, et leurs applications au probleme du développement d’une fonction arbitraire suivant les dites fonctions,” Soobshch. Kharkov. Mat. Obshch.,10, 97–201 (1907).
[205] W. A. Stekloff, ”Sur la condition de fermeture des systemes de fonctions orthogonales,” C. R. Acad. Sci.,151, 1116–1119 (1910). · JFM 41.0472.02
[206] W. A. Stekloff, ”Quelques applications nouvelles de la théorie de fermeture au problème de représentation approchée des fonctions et au probleme des moments,” Zap. Akad. Nauk Fiz.-Mat. Otd.,32, No. 4, 1–74 (1914).
[207] W. A. Stekloff, ”Sur une application de la théorie de fermeture au problème de développement des fonctions arbitraires en séries procédant suivant les polynômes de Tchebicheff,” Zap. Akad. Nauk. Fiz.-Mat. Ltd.,33, No. 8, 1–59 (1915).
[208] W. A. Stekloff, ”Application de la théorie de fermeture à la solution de certaines questions qui se rattachent au problème de moment,” Zap. Akad. Nauk Fiz.-Mat. Otd.,33, No. 9, 1–52 (1915).
[209] W. A. Stekloff, ”Théoreme de fermeture pour les polynômes de Laplace-Hermite-Tchebychef,” Izv. Akad. Nauk,10, 403–416 (1916).
[210] W. A. Stekloff, ”Théorème de fermeture pour les polynômes de Tchebychef-Laguerre,” Izv. Akad. Nauk,10, 633–642 (1916).
[211] W. A. Stekloff, ”Sur le développement des fonctions arbitraires en séries de polynômes de Tchebycheff-Laguerre,” Izv. Akad. Nauk,10, 719–738 (1916).
[212] W. A. Stekloff, ”Sur l’approximation des fonctions à l’aide des polynômes de Tchebychef et sur les quadratures, I, II, III,” Izv. Akad. Nauk,11, 187–218, 535–566, 687–718 (1917).
[213] W. A. Stekloff, ”Remarques sur les quadratures,” Izv. Akad. Nauk,12, 99–118 (1918). · JFM 48.1362.01
[214] W. A. Stekloff, ”Quelques remarques complémentaires sur les quadratures,” Izv. Akad. Nauk,12, 587–614 (1918).
[215] W. A. Stekloff, ”Sur les quadratures,” Izv. Akad. Nauk,13, 65–96 (1919).
[216] W. A. Stekloff, ”Sur le développement des fonctions continues en séries de polynômes de Tchebychef,” Izv. Akad. Nauk,15, 249–266 (1921).
[217] W. A. Stekloff, ”Une contribution nouvelle au problème de développement des fonctions arbitraires en série de polynômes de Tchebychef,” Izv. Akad. Nauk,15, 267–280 (1921).
[218] W. A. Stekloff, ”Une méthode de la solution du problème de développement des fonctions en séries de polynômes de Tchebychef indépendante de la théorie de fermeture. I,” Izv. Akad. Nauk,15, 281–302 (1921).
[219] W. A. Stekloff, ”Une méthode de la solution du problème de développement des fonctions en séries de polynômes de Tchebychef indépendante de la théorie de fermeture. II,” Izv. Akad. Nauk,15, 303–326 (1921).
[220] W. A. Stekloff, ”Sopra la teoria delle quadrature dette meccaniche,” Rend. Accad. Lincei,32, No. 1, 320–326 (1923). · JFM 49.0171.03
[221] W. A. Stekloff, ”Sur les problèmes de représentation des fonctions á l’aide de polynômes, du calcule approché des intégrales définies, du développement des fonctions en séries infinies suivant les polynômes et de l’interpolation considerés au point de vue des idées de Tchebycheff,” Proc. of the Internat. Math. Congress, Toronto, Vol. 1 (1924), pp. 631–640.
[222] W. A. Stekloff, ”Sur le probleme d’approximation des fonctions arbitraires à l’aide des polynômes de Tchebychef,” Izv. Akad. Nauk,20, 857–862 (1926).
[223] W. A. Stekloff, ”Théorie de fermeture et le problème de représentation approchée des fonctions continues à l’aide de polynômes de Tchebychef,” Acta Math.,49, 263–299 (1926). · JFM 53.0268.02 · doi:10.1007/BF02564115
[224] G. Szegö, ”Recent advances and open questions on the asymptotic expansions of orthogonal polynomials,” J. Soc. Indust. Appl. Math.,7, No. 3, 311–315 (1959). · Zbl 0101.29003 · doi:10.1137/0107025
[225] S. Verblunsky, ”On positive harmonic functions. II,” Proc. London Math. Soc.,40, 290–320 (1935). · Zbl 0013.15702
[226] P. Wynn, ”Über orthonormale Polynome und ein assoziirtes Momentenproblem,” Math. Scand.,29, No. 1, 104–112 (1971). · Zbl 0231.30037 · doi:10.7146/math.scand.a-11038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.