×

zbMATH — the first resource for mathematics

Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods. (English) Zbl 0468.76066

MSC:
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
65N06 Finite difference methods for boundary value problems involving PDEs
35L60 First-order nonlinear hyperbolic equations
65Z05 Applications to the sciences
Software:
MACSYMA
PDF BibTeX Cite
Full Text: DOI
References:
[1] Warming, R.F.; Beam, R.M., Aiaa j., 14, 1241, (1976)
[2] Warming, R.F.; Beam, R.M., On the construction and application of implicit factored schemes for conservation laws, (), 85 · Zbl 0392.65038
[3] Courant, R.; Isaacson, E.; Rees, M., Comm. pure appl. math., 5, 243, (1952)
[4] Godunov, S.K., Mat. sb., 47, 271, (1959), also Cornell Aeronautical Lab. Translation.
[5] Richtmyer, R.D.; Morton, K.W., Difference methods for initial-value problems, (1967), Interscience New York · Zbl 0155.47502
[6] Anucina, N.N., Soviet math., 5, 60, (1964)
[7] Gordon, P., The diagonal form of quasi-linear hyperbolic systems as a basis for difference equations, ()
[8] Yanenko, N.N., The method of fractional steps, (1971), Springer-Verlag New York · Zbl 0209.47103
[9] Fromm, J.E., J. comput. phys., 3, 176, (1968)
[10] Van Leer, B., J. comput. phys., 23, 263, (1977)
[11] Steger, J.L., Comput. methods appl. mech. eng., 13, 175, (1978)
[12] Moretti, G., Comput. fluids, 7, 191, (1979)
[13] Chakravarthy, S.R.; Anderson, D.A.; Salas, M.D., The split coefficient matrix method for hyperbolic systems of gas-dynamic equations, (), Pasadena, Calif.
[14] Sells, C.C.L., Numerical solutions of the Euler equations for steady transonic flow past a lifting aerofoil, () · Zbl 0202.26001
[15] Courant, R., ()
[16] Warming, R.F.; Beam, R.M.; Hyett, B.J., Math. comp., 29, 1037, (1975)
[17] Turkel, E., Math. comp., 27, 729, (1973)
[18] Schiff, L.B.; Steger, J.L., Numerical simulation of steady supersonic viscous flow, (), New Orleans, La. · Zbl 0462.76058
[19] {\scD. JESPERSON}, private communication, 1979.
[20] ()
[21] Maccormack, R.W., The effect of viscosity in hypervelocity impact cratering, (), Cincinnati Ohio · Zbl 1047.76550
[22] Fromm, J.E., A numerical study of byoyancy driven flows in room enclosures, (), 120-126
[23] Beam, R.M.; Warming, R.F., An implicit factored scheme for the compressible Navier-Stokes equations. II. the numerical ODE connection, AIAA paper 79-1446, (1979), Williamsburg, Va.
[24] Liepmann, H.W.; Roshko, A., Elements of gasdynamics, (1957), Wiley New York · Zbl 0078.39901
[25] Maccormack, R.W.; Baldwin, B.S., A numerical method for solving the Navier-Stokes equations with application to shock-boundary layer interactions, AIAA paper 75-1, (1975), Pasadena, Calif. · Zbl 0325.76070
[26] Beam, R.M.; Warming, R.F., Aiaa j., 16, 393, (1978)
[27] Steger, J.L., Aiaa j., 16, 679, (1978)
[28] Beam, R.M.; Warming, R.F., J. compmphys., 22, 87, (1976)
[29] Jameson, A.; Turkel, E., Implicit schemes and Lu decompositions, ICASE report no. 79-24, (1979) · Zbl 0533.65060
[30] Viviand, H., Formes conservatives des √©quations de la dynamique uvxuaz, La recherche aerosp. no. 1974-1, 65-66, (1974) · Zbl 0277.76062
[31] Strang, G., Linear algebra and its applications, (1976), Academic Press New York · Zbl 0338.15001
[32] Gantmacher, F.R., ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.