zbMATH — the first resource for mathematics

Autostability of models and Abelian groups. (English. Russian original) Zbl 0468.03022
Algebra Logic 19, 13-27 (1980); translation from Algebra Logika 19, 23-44 (1980).

03D45 Theory of numerations, effectively presented structures
03C15 Model theory of denumerable and separable structures
20K99 Abelian groups
20F10 Word problems, other decision problems, connections with logic and automata (group-theoretic aspects)
20A15 Applications of logic to group theory
PDF BibTeX Cite
Full Text: DOI
[1] S. S. Goncharov, ”Autostability and computable families of constructivizations,” Algebra Logika,14, No. 6, 647–680 (1975).
[2] S. S. Goncharov, ”On the number of nonautoequivalent constructivizations,” Algebra Logika,16, No. 3, 257–282 (1977).
[3] S. S. Goncharov, ”Constructive Boolean algebras,” in: Third All-Union Conf. on Mathematical Logic [in Russian], Novosibirsk (1974). · Zbl 0281.02049
[4] S. S. Goncharov and V. P. Dobritsa, ”An example of a constructive Abelian group with a nonconstructivizable reduced subgroup,” in: Fourth All-Union Conf. on Mathematical Logic [in Russian], Kishinev (1976). · Zbl 0603.20049
[5] S. S. Goncharov, ”Nonautoequivalent constructivizations of atomic Boolean algebras,” Mat. Zametki,19, No. 6, 853–858 (1976).
[6] Yu. L. Ershov, Theory of Numerations [in Russian], Part. III, Novosibirsk State Univ. (1974).
[7] A. G. Kurosh, Group Theory, Chelsea Publ.
[8] A. I. Mal’tsev, ”On recursive Abelian groups,” Dokl. Akad. Nauk SSSR,146, No. 5, 1009–1012 (1961).
[9] A. T. Nurtazin, ”Computable classes and algebraic conditions for autostability,” Author’s Abstract of Doctoral Dissertation, Novosibirsk (1974).
[10] A. T. Nurtazin, ”Strong and weak constructivizations,” Algebra Logika,13, No. 3, 311–323 (1974).
[11] H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw-Hill (1967). · Zbl 0183.01401
[12] S. S. Goncharov and V. D. Dzgoev, ”Autostability of models,” Algebra Logika,19, No. 1, 45–58 (1980). · Zbl 0468.03023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.