×

zbMATH — the first resource for mathematics

Regularizing the abstract convex program. (English) Zbl 0467.90076

MSC:
90C48 Programming in abstract spaces
90C25 Convex programming
90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)
46A03 General theory of locally convex spaces
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abrams, R.A.; Kerzner, L., A simplified test for optimality, J. optim. theory appl., 25, 161-170, (1978) · Zbl 0352.90047
[2] Barker, G.P., The lattice of faces of a finite dimensional cone, Linear algebra appl., 7, 71-82, (1973) · Zbl 0249.15010
[3] Barker, G.P.; Carlson, D., Cones of diagonally dominant matrices, Pacific J. math., 57, 15-32, (1975) · Zbl 0283.52005
[4] Ben-Israel, A.; Ben-Tal, A.; Zlobec, S., Optimality in nonlinear programming: A feasible directions approach, (1981), Wiley New York · Zbl 0454.90043
[5] Ben-Israel, A.; Ben-Tal, A.; Zlobec, S., Optimality conditions in convex programming, () · Zbl 0446.90068
[6] Ben-Israel, A.; Greville, T.N.E., Generalized inverses theory and applications, (1973), Wiley-Interscience New York
[7] Ben-Tal, A.; Ben-Israel, A., Characterizations of optimality in convex programming: the nondifferentiable case, Appl. anal., 9, 137-156, (1979) · Zbl 0408.90068
[8] Ben-Tal, A.; Ben-Israel, A.; Zlobec, S., Characterizations of optimality in convex programming without a constraint qualification, J. optim. theory appl., 20, 417-437, (1976) · Zbl 0327.90025
[9] Borwein, J.; Wolkowicz, H., Characterizations of optimality without constraint qualification for the abstract convex program, (), in press · Zbl 0495.90085
[10] Borwein, J.; Wolkowicz, H., Characterizations of optimality for the abstract convex program with finite dimensional range, J. austral. math. soc. ser. A, 30, 390-411, (1981) · Zbl 0469.90088
[11] Gould, F.J.; Tolle, J.W., Geometry of optimality conditions and constraint qualifications, Math. programming, 2, 1-18, (1972) · Zbl 0288.90068
[12] Grunbaum, B., Convex polytopes, (1967), Wiley London/New York/Sydney · Zbl 0163.16603
[13] Holmes, R.B., Geometric functional analysis and its applications, (1975), Springer-Verlag New York/Berlin · Zbl 0336.46001
[14] Luenberger, D.G., Optimization by vector space methods, (1969), Wiley New York · Zbl 0176.12701
[15] Massam, H., Optimality conditions for a cone-convex programming problem, J. austral. math. soc. ser. A, 27, 141-162, (1979) · Zbl 0399.90065
[16] Pukelsheim, F., Linear models and convex programs: unbiased nonnegative estimation in variance component models, Report 104, (1977), Stanford
[17] Polak, E.; Trahan, R.; Mayne, D.Q., Combined phase I-phase II methods of feasible directions, Math. programming, 17, 61-73, (1979) · Zbl 0407.90076
[18] Pachter, M.; Stern, R.J., On state restrained linear quadratic control problems, J. math. anal. appl., 69, 315-328, (1979) · Zbl 0418.49024
[19] Robinson, S.M., Extension of Newton’s method to nonlinear functions with value in a cone, Numer. math., 19, 341-347, (1972) · Zbl 0227.65040
[20] Robinson, S.M., Strongly regular generalized equations, () · Zbl 0437.90094
[21] Rockafellar, R.T., Some convex programs whole duals are linearly constrained, (), 293-322
[22] Rockafellar, R.T., Convex analysis, (1972), Princeton Univ. Press Princeton, N. J · Zbl 0224.49003
[23] {\scH. Tuy}, “Some Results on Fixed Point Algorithmic Theory,” presented at the Tenth International Symposium on Mathematical Programming.
[24] Wolkowicz, H., Calculating the cone of directions of constancy, J. optim. theory appl., 25, 451-457, (1978) · Zbl 0362.90132
[25] Wolkowicz, H., Geometry of optimality conditions and constraint qualifications: the convex case, Math. programming, 19, 32-60, (1980) · Zbl 0436.90082
[26] Wolkowicz, H., The method of reduction in convex programming, () · Zbl 0362.90132
[27] Wolkowicz, H., A strengthened test for optimality, (), in press · Zbl 0473.90066
[28] Zowe, J., Subdifferentiability of convex functions with values in an ordered vector space, Math. scand., 34, 69-83, (1974) · Zbl 0288.46007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.