×

zbMATH — the first resource for mathematics

A lower bound for electrostatic capacity in the plane. (English) Zbl 0466.31007

MSC:
31A15 Potentials and capacity, harmonic measure, extremal length and related notions in two dimensions
78A30 Electro- and magnetostatics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Garnett, Lecture Notes in Mathematics 297 (1972)
[2] Essen, Lecture Notes in Mathematics 467 (1975)
[3] Eggleston, Convexity (1969)
[4] DOI: 10.1007/BF01982715 · Zbl 0454.35087 · doi:10.1007/BF01982715
[5] Wendt, Electric fields and waves XVI (1958)
[6] Stampacchia, Theory and applications of monotone operators (1969)
[7] Hayman, Multivalent functions (1958)
[8] Pólya, Isoperimetric inequalities in mathematical physics (1951) · Zbl 0044.38301 · doi:10.1515/9781400882663
[9] DOI: 10.1137/1009070 · Zbl 0154.12602 · doi:10.1137/1009070
[10] DOI: 10.2307/2371912 · Zbl 0063.06304 · doi:10.2307/2371912
[11] DOI: 10.1070/IM1973v007n02ABEH001942 · Zbl 0281.35074 · doi:10.1070/IM1973v007n02ABEH001942
[12] DOI: 10.1002/cpa.3160220203 · Zbl 0167.11501 · doi:10.1002/cpa.3160220203
[13] Landkof, Foundations of modem potential theory (1972) · Zbl 0253.31001 · doi:10.1007/978-3-642-65183-0
[14] Sarvas, Ann. Acad. Sci. Fenn. Ser. AI 522 (1972)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.