zbMATH — the first resource for mathematics

The transition to aperiodic behavior in turbulent systems. (English) Zbl 0465.76050

76F99 Turbulence
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems, general theory
34C10 Oscillation theory, zeros, disconjugacy and comparison theory for ordinary differential equations
34C25 Periodic solutions to ordinary differential equations
76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI
[1] Franceschini, V., Tebaldi, C.: Sequences of infinite bifurcation and turbulence in five-modes truncation of the Navier-Stokes equations. Istituto Matematico, Univ. di Modena preprint · Zbl 0572.76029
[2] Franceschini, V.: A Feigenbaum sequence of bifurcations in the Lorenz model, Istituto Matematico, Univ. di Modena preprint, to be published in J. Stat. Phys.
[3] Computations by the author on Duffing’s equation, following Ueda, Y.: J. Stat. Phys.20 (2), 181 (1979) · doi:10.1007/BF01011512
[4] Holmes, P.: A nonlinear oscillator with a strange attractor. Department of Theoretical and Applied Mechanics, Cornell University (preprint) · Zbl 0423.34049
[5] Huberman, B., Crutchfield, J.: Chaotic states of anharmonic systems in periodic fields. Xerox Corp., Palo Alto Research Center (preprint)
[6] Marzec, C.J., Spiegel, E.A.: A strange attractor. Astronomy Department, Columbia University (preprint)
[7] Libchaber, A., Maurer, J.: Une expérience de Rayleigh-Bénard de géométrie réduite. École Normale Supérieure (preprint)
[8] Feigenbaum, M.J.: Phys. Lett.74A, 375 (1979)
[9] Collet, P., Eckmann, J.-P., Koch, H.: Period doubling bifurcations for families of maps onC n. Department of Physics, Harvard University (preprint) · Zbl 0521.58041
[10] Metropolis, N., Stein, M.L., Stein, P.R.: Combinatorial Theory15 (1), 25 (1973) · Zbl 0259.26003 · doi:10.1016/0097-3165(73)90033-2
[11] May, R., Oster, G.: Amer. Naturalist110 (974), 573 (1976). This paper independently of myself, discovers the first clue of a universal metric property · doi:10.1086/283092
[12] Feigenbaum, M.J.: Annual Report 1975-76, LA-6816-PR, Los Alamos
[13] Feigenbaum, M.J.: J. Stat. Phys.19 (1), 25 (1978) · Zbl 0509.58037 · doi:10.1007/BF01020332
[14] Feigenbaum, M.J.: J. Stat. Phys.21 (6) (1979)
[15] Feigenbaum, M.J.: Lecture Notes in Physics93, 163 (1979) · doi:10.1007/BFb0021743
[16] Collet, P., Eckmann, J.-P., Lanford III, O.: Universal properties of maps on an interval (in preparation) · Zbl 0455.58024
[17] Collet, P., Eckmann, J.-P.: Bifurcations et groupe de renormalisation. IHES/P/78/250 (preprint)
[18] Derrida, B., Gervois, A., Pomeau, Y.: J. Phys. A12, 269 (1979). This paper contains the first numerical observation of ? in a 2-dimensional map · Zbl 0416.28011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.