×

zbMATH — the first resource for mathematics

Tensor products of sequences, functions, and operators. (English) Zbl 0464.47006

MSC:
47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.)
47L10 Algebras of operators on Banach spaces and other topological linear spaces
46M05 Tensor products in functional analysis
41A17 Inequalities in approximation (Bernstein, Jackson, Nikol’skiĭ-type inequalities)
41A46 Approximation by arbitrary nonlinear expressions; widths and entropy
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] H.Apiola, On the tensor product and product Hom(f, g) of compact operators in locally convex topological vector spaces. Ann. Acad. Sci. Fennicae, Ser. A, Math.544, Helsinki 1973. · Zbl 0259.46056
[2] H. Apiola, Some permanence properties of locally convex spaces defined by norm space ideals of operators. Studia Math.55, 265-278 (1976). · Zbl 0343.46008
[3] J.Bergh and J.Löfström, Interpolation spaces. Berlin-Heidelberg-New York 1976.
[4] A. Brown andC. Pearcy, Spectra of tensor products of operators. Proc. Amer. Math. Soc.17, 162-166 (1966). · Zbl 0141.32202 · doi:10.1090/S0002-9939-1966-0188786-5
[5] J. R. Holub, Tensor product mappings I. Math. Ann.188, 1-12 (1970). · Zbl 0195.41601 · doi:10.1007/BF01435409
[6] J. R. Holub, Compactness in topological tensor products and operator spaces. Proc. Amer. Math. Soc.36, 398-406 (1972). · Zbl 0261.46022 · doi:10.1090/S0002-9939-1972-0326458-7
[7] J. R. Holub, Tensor product mappings II. Proc. Amer. Math. Soc.42, 437-441 (1974). · Zbl 0275.47012 · doi:10.1090/S0002-9939-1974-0331104-4
[8] T. Ichinose, On the spectra of tensor products of linear operators in Banach spaces. J. Reine Angew. Math.244, 119-153 (1970). · Zbl 0198.47004 · doi:10.1515/crll.1970.244.119
[9] G. E. Karad?ov, The interpolation method of ?means? for quasi-normed spaces. Doklady Acad. Nauk SSSR209, 33-36 (1973).
[10] G.Köthe, Topological vector spaces (I and II). New York-Heidelberg-Berlin 1966 and 1979.
[11] S. M.Nikolskij, Approximation of functions of several variables and imbedding theorems. Moscow 1969 and New York-Heidelberg 1975.
[12] A.Pietsch, Operator ideals. Berlin 1978 and Amsterdam-New York-Oxford 1980.
[13] A. Pietsch, Approximation spaces. J. Approximation Theory32, 115-134 (1981). · Zbl 0489.47008 · doi:10.1016/0021-9045(81)90109-X
[14] M. Schechter, On the spectra of operators on tensor products. J. Funct. Anal.4, 95-99 (1969). · Zbl 0183.14102 · doi:10.1016/0022-1236(69)90024-X
[15] T. Terzioglu, On the diametral dimension of the projective tensor products. Revue Fac. Sci. Univ. Istanbul Sér. A.38, 5-10 (1973). · Zbl 0327.46017
[16] T. Terzioglu, On the Gelfand numbers of Hom(S, T). Math. Balkanica5, 273-275 (1975). · Zbl 0389.47023
[17] N.Tita, Contribu?ii la studiul unor clase de operatori liniari ?i aplica?ii. Thesis, Univ. Bucarest 1976.
[18] H.Triebel, Interpolation theory, function spaces, differential operators. Berlin 1978 and Amsterdam-New York-Oxford 1978. · Zbl 0387.46032
[19] K.Vala, On compact sets of compact operators. Ann. Acad. Sci. Fennicae, Ser. A, Math.351, Helsinki 1964. · Zbl 0132.09801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.