×

zbMATH — the first resource for mathematics

A study of three-node triangular plate bending elements. (English) Zbl 0463.73071

MSC:
74S05 Finite element methods applied to problems in solid mechanics
49M15 Newton-type methods
74K20 Plates
Software:
ADINA
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] ’Geometrically nonlinear shell analysis’, Proc. Int Conf. in Nonlinear Solid and Structural Mech., Col-1/Col-26, Geilo, Norway, 1977.
[2] ’Shell elements’, Proc., World Congr. On F.E.M., in Struct. Mech., vol. 1, Bournemouth, England, 1975.
[3] and , Finite Elements for Thin Shells and Curved Members, Wiley, London, 1976.
[4] ’Thin shells’, Proc. Symp. Struct. Mech. Computer Programs (Eds, et al.), Univ. Press of Virginia, Charlottesville, 1974, pp. 277-358.
[5] ’Analyse non linéaire des coques minces élastiques de formes arbitraries par éléments triangulaires courbés’. D. Sc. thesis, Univ. Laval, Quebec, Canada, 1977.
[6] ’A plate/shell element for large deflections and rotations’, in Formulations and Computation Algorithms in Finite Element Analysis (Eds and ), MIT Press, 1976.
[7] Bathe, J. Comp. Struct. 11 pp 23– (1980)
[8] and , ’Nonlinear and post-buckling analysis of structures’, in Formulations and Computation Algorithms in Finite Element Analysis (Eds et al.), MIT Press, 1976.
[9] ’Finite element instability analysis of free-form shells’, Report No. 77-2, Norwegian Institute of Technology, Univ. of Trondheim, Norway, 1977.
[10] The Finite Element Method, 3rd edn, McGraw-Hill, London, 1977.
[11] and , Numerical Methods in Finite Element Analysis, Prentice-Hill, London, 1977.
[12] ’A hybrid stress element for thin shell analysis’, Proc. Conf. on Finite Element Methods in Engineering, Univ. of South Wales, 1974.
[13] Olson, Int. J. num. Meth. Engng 14 pp 51– (1979)
[14] ’Hybrid stress finite element model for nonlinear shell problems’, Proc. 6th Canadian Conf. on Applied Mech., U.B.C. Vancouver, Canada, 1977.
[15] Argyris, Comp. Meth. Appl. Mech. Eng. 10 pp 371– (1977)
[16] and , ’Finite element stiffness matrices for analysis of plate bending’, Proc. Conf. on Matrix Methods in Structural Mechanics, WPAFB, Ohio, 1965, pp. 515-545.
[17] , and , ’Triangular elements in plate-bending–conforming and non-conforming solutions’, Proc. Conf. on Matrix Methods in Structural Mechanics, WPAFB, Ohio, 1965, pp. 547-576.
[18] and ’A refined quadrilateral element for analysis of plate bending’, Proc. Conf. on Matrix Methods in Structural Mechanics, WPAFB, Ohio, 1968, pp. 399-440.
[19] Kikuchi, Num. Math. 24 pp 211– (1975)
[20] Applied Plate Theory for the Engineer, Lexington Books, Mass., 1976.
[21] Razzaque, Int. J. num. Meth. Engng 6 pp 333– (1973)
[22] and , ’A triangular flat plate bending elements’, Rep. TR-68-3, Dept of Civil Eng., MIT, Cambridge, Mass., 1968.
[23] Finite Element Analysis: Fundamentals, Prentice-Hall, Englewood Cliffs, N.J., 1975.
[24] ’Element stiffness matrices for prescribed boundary stresses’, Proc. Conf. on Matrix Methods in Structural Mechanics, WPAFB, Ohio, 1965, pp. 457-477.
[25] Allwood, Int. J. num. Meth. Engng 1 pp 135– (1969)
[26] ’Triangular finite elements for plate bending with constant and linearly varying bending moments’, Proc. IUTAM Conf. on High Speed Computing of Elastic Structures, Liege, 1970, pp. 105-136.
[27] ’Equivalent finite elements of different bases’, Proc. Advances in Comp. Methods in Structural Mechanics and Design (Eds ), Univ. of Alabama Press, Huntsville, 1972, pp. 133-149.
[28] Neale, J. Sound Vibration 23 pp 101– (1972)
[29] Bartholomew, Int. J. num. Meth. Engng 10 pp 968– (1976)
[30] Pian, Int. J. num. Meth. Engng 1 pp 3– (1969)
[31] Allman, Int. J. num. Meth. Engng 10 pp 263– (1976)
[32] Mang, Int. J. num. Meth. Engng 11 pp 145– (1977)
[33] Stricklin, AIAA J. 7 pp 180– (1969)
[34] ’Numerical analysis of thin shells by curved triangular elements based on discrete Kirchhoff hypothesis’, Proc. ASCE Symp. on Applications of FEM in Civil Engineering, Vanderbilt Univ., Nashville, Tenn., 1969, pp. 13-14.
[35] Dhatt, AIAA J. 8 pp 2100– (1970)
[36] and , ’Finite element analysis of containment vessels’, Proc. First Conf. on Struct. Mech. in Reactor Tech., vol 5, paper J3/6, Berlin, Germany, 1971.
[37] and , An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, N.J., 1973.
[38] Fried, Comp. Struct. 4 pp 771– (1974)
[39] Fried, Q. Appl. Math. 31 pp 303– (1973)
[40] Fried, Int. J. Sol. Struct. 9 pp 449– (1973)
[41] Zienkiewicz, Int. J. num. Meth. Engng 3 pp 575– (1971)
[42] Hughes, Int. J. num. Meth. Engng 11 pp 1529– (1977)
[43] ’Compatibility’, Proc. World Congr. On FEM in Struct. Mech., Bournemouth, England, 1975.
[44] ’On derivation of stiffness matrices with C0 rotation fields for plates and shells’, Proc. 3rd Conf. on Matrix Methods in Struct. Mech., WPAFB, Ohio, 1971, pp. 255-274.
[45] Lee, AIAA J. 16 pp 29– (1978)
[46] Variational Methods in Elasticity and Plasticity, 2nd edn, Pergamon Press, Oxford, 1975.
[47] Rock, Comp. Struct. 6 pp 37–
[48] and , Theory of Plates and Shells, 2nd edn, McGraw-Hill, New York, 1969.
[49] ’ADINA–a finite element program for automatic dynamic incremental nonlinear analysis’, Acoustics and Vibration Lab., Rep. 82448-1, Dept of Mech. Eng., MIT, 1975 (revised 1978).
[50] Cowper, AIAA J. 7 pp 1957– (1969)
[51] Cook, Int. J. num. Meth. Engng 5 pp 227– (1972)
[52] Kikuchi, Nucl. Eng. Des. 23 pp 155– (1972)
[53] and , ’A search for the optimum three-node triangular plate bending element’, Acoustics and Vibration Lab., Rep. 82448-8, Dept of Mech. Eng., MIT, 1978.
[54] Pugh, Int. J. num. Meth. Engng 12 pp 1059– (1978)
[55] Zienkiewicz, Int. J. num. Meth. Engng 11 pp 1545– (1977)
[56] Malkus, Comp. Meth. Appl. Mech. Engng 15 pp 63– (1978)
[57] and , ’Some quadrilateral isoparametric finite elements based on Mindlin plate theory’, Proc. Symp. on Applications of Computer Methods in Engineering, Los Angeles, Cal., 1977.
[58] Oden, Appl. Mech. Rev. 31 pp 1053– (1978)
[59] ’Réponse des voiles minces aux variables aléatoires’, D. Sc. Thesis, Univ. Laval, Quebec, Canada, 1972.
[60] and , ’Finite element bending analysis of Reissner plates’, J. Eng. Mech. Div., ASCE, 967-983 (1970).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.