×

zbMATH — the first resource for mathematics

The basic contact processes. (English) Zbl 0463.60085

MSC:
60K35 Interacting random processes; statistical mechanics type models; percolation theory
60C05 Combinatorial probability
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bishir, J., A lower bound for the critical probability in the one-quadrant oriented-atom percolation process, J. roy. statist. soc., 25, 401-404, (1963) · Zbl 0123.35804
[2] Bramson, M.; Gray, L., A note on the survival of the long-range contact process, (1980), preprint
[3] M. Bramson, L. Gray and D. Griffeath, unpublished(1980).
[4] Broadbent, S.; Hammersley, J., Percolation processes I. crystals and mazes, Proc. Cambridge philos. soc., 53, 629-645, (1957) · Zbl 0091.13901
[5] Durrett, R., On the growth of one dimensional contact processes, Ann. probability, 8, 890-907, (1980) · Zbl 0457.60082
[6] Durrett, R.; Griffeath, D., Contact processes in several dimensions, (1980), preprint
[7] Durrett, R.; Liggett, T., The shape of the limit set in Richardson’s growth model, (1980), preprint
[8] L. Gray and D. Griffeath, A stability criterion for attractive nearest neighbor spin systems on Z, Ann. Probability, to appear. · Zbl 0483.60090
[9] Gray, L.; Smythe, R.; Wierman, J., Lower bounds for the critical probability in percolation models with oriented bonds, (1980), preprint · Zbl 0464.60098
[10] Griffeath, D., Limit theorems for nonergodic set-valued Markov processes, Ann. probability, 8, 379-387, (1978) · Zbl 0378.60105
[11] Griffeath, D., Pointwise ergodicity of the basic contact process, Ann. probability, 7, 139-143, (1979) · Zbl 0392.60085
[12] Griffeath, D., Additive and cancellative interacting particle systems, () · Zbl 0412.60095
[13] Griffiths, R., The Peierls argument for the existence of phase transitions, (), 13-26
[14] Hammersley, J., Bornes supérieures de la probabilité critique dans un processus de filtration, (), 17-37 · Zbl 0096.11502
[15] Harris, T.E., Lower bound for the critical probability in a certain percolation process, Proc. Cambridge philos. soc., 56, 13-20, (1960) · Zbl 0122.36403
[16] Harris, T.E., Nearest neighbor Markov interaction processes on multi-dimensional lattices, Advances in math., 9, 66-89, (1972) · Zbl 0267.60107
[17] Harris, T.E., Contact interactions on a lattice, Ann. probability, 2, 969-988, (1974) · Zbl 0334.60052
[18] Harris, T.E., On a class of set-valued Markov processes, Ann. probability, 4, 175-194, (1976) · Zbl 0357.60049
[19] Harris, T.E., Additive set-valued Markov processes and graphical methods, Ann. probability, 6, 355-378, (1978) · Zbl 0378.60106
[20] Holley, R.; Liggett, T.M., Ergodic theorems for weakly interacting infinite systems and the voter model, Ann. probability, 3, 643-663, (1975) · Zbl 0367.60115
[21] Holley, R.; Liggett, T.M., The survival of contact processes, Ann. probability, 6, 198-206, (1978) · Zbl 0375.60111
[22] Holley, R.; Liggett, T.M., Generalized potlatch and smoothing processes, (1980), preprint · Zbl 0441.60096
[23] Kesten, H., The critical probability of bond percolation on the square lattice equals \(12\), Commun. math. phys., 74, 41-59, (1980) · Zbl 0441.60010
[24] Liggett, T.M., The stochastic evolution of infinite systems of interacting particles, (), 187-248
[25] Liggett, T.M., Attractive nearest neighbor spin systems on the integers, Ann. probability, 6, 629-636, (1978) · Zbl 0381.60095
[26] Maly̌sev, V.A., The central limit theorem for Gibbsian random fields, Soviet math. dokl., 16, 1141-1145, (1975)
[27] Mauldon, J.G., Assymetric oriented percolation on a plane, Proc. 4th Berkeley symposium, Vol. 2, 337-345, (1961)
[28] Neaderhouser, C., Some limit theorems for random fields, Comm. math. phys., 61, 293-305, (1978) · Zbl 0393.60019
[29] Richardson, D., Random growth in a tesselation, Proc. Cambridge philos. soc., 74, 515-528, (1973) · Zbl 0295.62094
[30] Shante, V.K.; Kirkpatrick, S., Introduction to percolation theory, Advances in physics, 20, 325-357, (1971)
[31] Smythe, R.T.; Wierman, J.C., First passage percolation on the square lattice, () · Zbl 0379.60001
[32] Spitzer, F., Interaction of Markov processes, Advances in math., 5, 246-290, (1970) · Zbl 0312.60060
[33] Spitzer, F., Random fields and interacting particle systems, M.A.A. summer seminar notes, (1971), Williamstown, MA
[34] Spitzer, F., Introduction aux processus de Markov à paramètres dans Z_v, ()
[35] Stavskaya, O.N.; Piatetskii-Shapirio, I.I., On homogeneous networks of spontaneously active elements, Problemy kibernet., 20, 91-106, (1968)
[36] Stout, W.F., Almost sure convergence, (1974), Academic Press New York · Zbl 0321.60022
[37] Stroock, D., Lectures on infinite interacting systems, Kyoto university lectures in mathematics, 11, (1978) · Zbl 0407.60097
[38] Toom, A.L., A family of uniform nets of formal systems, Soviet mathematics, 9, 1338-1341, (1968) · Zbl 0186.51101
[39] Toom, A.L., Nonergodic multidimensional systems of automata, Problemy peredachi informatsii, 10, 239-246, (1974) · Zbl 0315.94053
[40] Vasershtein, L.N., Markov processes over denumerable products of spaces, describing large systems of automata, Problemy peredachi informatsii, 5, 3, 64-73, (1969)
[41] Vasershtein, L.N.; Leontovich, A.M., Invariant measures of certain Markov operators describing a homogeneous random medium, Problemy pereadachi informatsii, 6, 1, 71-80, (1970)
[42] Vasilev, N.B., Limit behavior of one random medium, Problemy peredachi informatsii, 5, 4, 68-74, (1969)
[43] Vasil’ev, N.B.; Mityushin, L.G.; Pyatetskii-Shapiro, I.I.; Toom, A.L., Stavskaya operators, (), (In Russian), preprint no. 12
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.