×

zbMATH — the first resource for mathematics

On uniform circuit complexity. (English) Zbl 0462.68013

MSC:
68Q25 Analysis of algorithms and problem complexity
68Q05 Models of computation (Turing machines, etc.) (MSC2010)
94C10 Switching theory, application of Boolean algebra; Boolean functions (MSC2010)
68Q45 Formal languages and automata
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aho, A.V.; Hopcroft, J.E.; Ullman, J.D., The design and analysis of computer algorithms, (1974), Addison-Wesley Reading, Mass · Zbl 0286.68029
[2] Borodin, A., On relating time and space to size and depth, SIAM J. comput., 6, No. 4, 733-743, (1977) · Zbl 0366.68039
[3] Colbourn, C.J.; Booth, K.S., Linear time automorphism algorithms for trees, interval graphs, and planar graphs, () · Zbl 0456.05024
[4] Cook, S.A., Characterizations of pushdown machines in terms of time-bounded computers, J. assoc. comput. Mach., 18, No. 1, 4-18, (1971) · Zbl 0222.02035
[5] Cook, S.A., Deterministic CFL’s are accepted simultaneously in polynomial time and log squared space, (), 338-345
[6] Chandra, A.K.; Kozen, D.C.; Stockemeyer, L.J., Alternation, J. assoc. comput. Mach., 28, No. 1, 114-133, (1981) · Zbl 0473.68043
[7] Csanky, L., Fast parallel matrix inversion algorithms, (), 11-12 · Zbl 0353.68063
[8] Dymond, P.W.; Cook, S.A., Hardware complexity and parallel computation, (), 360-372
[9] W. Erni, Some Further Languages Log-Tape Reducible to Context-Free Languages, Institüt für Angewandte Informatik ünd Formale, Beschreibüngverfahren, Universität Karlsrühe, Karlsrühe, West Germany.
[10] Fortune, S.; Wyllie, J., Parallelism in random access machines, (), 114-118 · Zbl 1282.68104
[11] Goldschlager, L.M., Synchronous parallel computation, ()
[12] Goldschlager, L.M., A unified approach to models of synchronous parallel machines, (), 89-94 · Zbl 1282.68105
[13] Hartmanis, J.; Simon, J., On the power of multiplication in random access machines, (), 13-23
[14] Ladner, R.E., The circuit value problem is log space complete for P, SIGACT news, 7, No. 1, 18-20, (1975)
[15] Pippenger, N.; Fischer, M.J., Relations among complexity measures, J. assoc. comput. Mach., 26, No. 2, 361-381, (1979) · Zbl 0405.68041
[16] Pippenger, N., Fast simulation of combinational logic networks by machines without random-access storage, IBM research report RC 6582, (1977)
[17] Pippenger, N., On simultaneous resource bounds, ()
[18] Pippenger, N., Pebbling with an auxiliary pushdown, IBM research report RJ3012, (1980) · Zbl 0468.68067
[19] Pratt, V.R.; Rabin, M.O.; Stockmeyer, L.J., A characterization of the power of vector machines, (), 122-134
[20] Pratt, V.R.; Stockmeyer, L.J., A characterization of the power of vector machines, J. comput. system sci., 12, 198-221, (1976) · Zbl 0342.68033
[21] Paul, W.J.; Tarjan, R.E., Time-space trade-offs in a pebble game, Acta inform., 10, 111-115, (1978) · Zbl 0399.05030
[22] Ruzzo, W.L., Tree-sized bounded alternation, J. comput. system sci., 21, 218-235, (1980) · Zbl 0445.68034
[23] W. L. Ruzzo, “An improved characterization of the power of vector machines,” University of Washington, Computer Science Department Technical Report 78-10-01, in preparation.
[24] Savitch, W.J., Parallel and nondeterministic time complexity classes, (), 411-424
[25] Schnorr, C.P., The network complexity and the Turing machine complexity of finite functions, Acta inform., 7, 95-107, (1976) · Zbl 0338.02019
[26] Savitch, W.J.; Stimson, M.J., Time bounded random access machines with parallel processing, J. assoc. comput. Mach., 26, No. 1, 103-118, (1979) · Zbl 0398.68014
[27] Stockmeyer, L.J., The polynomial-time hierarchy, Theoret. comput. sci., 3, 1-22, (1976) · Zbl 0353.02024
[28] Sudborough, I.H., Time and tape bounded auxiliary pushdown automata, (), 493-503 · Zbl 0366.68037
[29] Sudborough, I.H., The complexity of the membership problem for some extensions of context-free languages, Internat. J. comput. math. A, 6, 191-215, (1977) · Zbl 0398.68037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.